IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235783.html
   My bibliography  Save this article

Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network

Author

Listed:
  • Rui Chen
  • Meiling Wang
  • Yi Lai

Abstract

In order to explore the application of the image recognition model based on multi-stage convolutional neural network (MS-CNN) in the deep learning neural network in the intelligent recognition of commodity images and the recognition performance of the method, in the study, the features of color, shape, and texture of commodity images are first analyzed, and the basic structure of deep convolutional neural network (CNN) model is analyzed. Then, 50,000 pictures containing different commodities are constructed to verify the recognition effect of the model. Finally, the MS-CNN model is taken as the research object for improvement to explore the influence of label errors (p = 0.03, 0.05, 0.07, 0.09, 0.12) with different parameter settings and different probabilities (size of convolutional kernel, Dropout rate) on the recognition accuracy of MS-CNN model, at the same time, a CIR system platform based on MS-CNN model is built, and the recognition performance of salt and pepper noise images with different SNR (0, 0.03, 0.05, 0.07, 0.1) was compared, then the performance of the algorithm in the actual image recognition test was compared. The results show that the recognition accuracy is the highest (97.8%) when the convolution kernel size in the MS-CNN model is 2*2 and 3*3, and the average recognition accuracy is the highest (97.8%) when the dropout rate is 0.1; when the error probability of picture label is 12%, the recognition accuracy of the model constructed in this study is above 96%. Finally, the commodity image database constructed in this study is used to identify and verify the model. The recognition accuracy of the algorithm in this study is significantly higher than that of the Minitch stochastic gradient descent algorithm under different SNR conditions, and the recognition accuracy is the highest when SNR = 0 (99.3%). The test results show that the model proposed in this study has good recognition effect in the identification of commodity images in scenes of local occlusion, different perspectives, different backgrounds, and different light intensity, and the recognition accuracy is 97.1%. To sum up, the CIR platform based on MS-CNN model constructed in this study has high recognition accuracy and robustness, which can lay a foundation for the realization of subsequent intelligent commodity recognition technology.

Suggested Citation

  • Rui Chen & Meiling Wang & Yi Lai, 2020. "Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0235783
    DOI: 10.1371/journal.pone.0235783
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235783
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235783&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huwei Liu & Li Zhou & Junhui Zhao & Fan Wang & Jianglong Yang & Kaibo Liang & Zhaochan Li, 2022. "Deep-Learning-Based Accurate Identification of Warehouse Goods for Robot Picking Operations," Sustainability, MDPI, vol. 14(13), pages 1-16, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.