Author
Listed:
- Yan Xuan
- Linyun Xu
- Guanhua Liu
- Jie Zhou
Abstract
The most effective method for harvesting forest fruit is the mechanical vibration harvesting method. During the forced vibration process, the fruit will be shed from the tree when the inertia of the fruit is greater than the fruit’s pedicel retention force. In order to study the movement response characteristics of the Ginkgo biloba fruit in depth, for a small Ginkgo biloba fruit tree, the frequency curve of the fruit tree had been obtained in this paper, based on the pulse hammer excitation method, and four resonant frequencies and four trough point frequencies, in the frequency range of 10 Hz~25 Hz, were determined as the test excitation frequency. Through a comparison test between the simulated fruit and the Ginkgo biloba fruit, both the simulated fruit and the real Ginkgo biloba fruit demonstrated good response consistency, and the results had shown that the simulated fruit could be used to replace the Ginkgo biloba fruit. The acceleration response of the resonant frequency and the trough point frequency for two test points of the two primary branches had also been analyzed. It was found that the resonant frequency caused an obvious harmonic response. For the same frequency, the fruit at some points produced a very strong vibrational response, while at other points the fruit was almost stationary. Therefore, it was difficult for a fruit tree to completely shed all its fruit through excitation at a single frequency. It was more difficult to induce a strong vibrational response of fruit on branches of higher stiffness. On the contrary, it was easier to induce a strong vibrational response on more flexible branches regardless of the resonant frequency or the trough point frequency excitation.
Suggested Citation
Yan Xuan & Linyun Xu & Guanhua Liu & Jie Zhou, 2020.
"The vibrational response of simulated Ginkgo biloba fruit based on their frequency spectrum characteristics,"
PLOS ONE, Public Library of Science, vol. 15(7), pages 1-15, July.
Handle:
RePEc:plo:pone00:0235494
DOI: 10.1371/journal.pone.0235494
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235494. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.