Author
Abstract
Evidence exists that depression interacts with physical illness to amplify the impact of chronic conditions like diabetes. The co-occurrence of these two conditions leads to worse health outcomes and higher healthcare costs. This study seeks to understand what demographic and socio-economic indicators can be used to predict co-occurrence at both the state and the individual level. Diabetes and depression are modeled as a bivariate normal distribution using data from the Behavioral Risk Factor Surveillance System 2016–2017 cohorts. The tetrachoric (latent) correlation between diabetes and depression is 17.2% and statistically significant, however the likelihood of any person being diagnosed with both conditions is small—as high as 4.3% (Arizona) and as low as 2.3% (Utah). We find that demographic characteristics (sex, age, and race) operate in opposite directions in predicting diabetes and depression diagnosis. Behavioral indicators (BMI≥30, smoking, and exercise); and life outcomes, (schooling attainment, marital and veteran status) work in the same direction to produce co-occurrence and as such are more powerful predictors of co-occurrence than demographic characteristics. It is important to have a rapid and efficient instrument to diagnoses co-occurrence. Simple questions about lifestyle choices, educational attainment and family life could help bridge the gap between primary care and psychological services with beneficial spillovers for patient-doctor communication.
Suggested Citation
Maria L Alva, 2020.
"Co-occurrence of diabetes and depression in the U.S,"
PLOS ONE, Public Library of Science, vol. 15(6), pages 1-10, June.
Handle:
RePEc:plo:pone00:0234718
DOI: 10.1371/journal.pone.0234718
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234718. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.