Author
Listed:
- Yosuke Ueki
- Hans Lilholt
- Bo Madsen
Abstract
Despite the good mechanical properties of natural fibre composites, their use in load-bearing components is still limited, which may be due to lack of knowledge and confidence in calculating the performance of the composites by mechanical models. The present study is providing an experimental evaluation of stiffness predictions of multiaxial flax fibre composite by classical laminate theory (CLT). The experimental base is (i) multiaxial flax fibre composites fabricated with two types of biaxial non-crimp fabrics, having a nominal yarn orientation of ±45°, and (ii) uniaxial flax fibre composites fabricated with the same flax yarn as used in the fabrics. The fabricated composites are characterised by volumetric composition, yarn orientation and tensile properties. A fast and easy operational Fast Fibre Orientation (FFO) method is developed to determine the actual yarn orientation in fabrics and composites. It is demonstrated that the FFO method is a robust method, giving repeatable results for yarn orientations, and it can be used both on fabrics and composites. CLT predictions of stiffness of the multiaxial flax fibre composites are shown to be in good agreement with the measured stiffnesses of the composites in three testing directions (0°, 45°, and 90°). The use of the actual yarn orientations measured by the FFO method, instead of the nominal yarn orientations of ±45°, is shown to result in improved CLT predictions of stiffness with a mean deviation between predictions and measurements on 0.2 GPa. Altogether, it is demonstrated that stiffness of multiaxial flax fibre composites can be accurately predicted by CLT, without any fitting constants, based on independently determined stiffness parameters of the related uniaxial flax fibre composite, and based on measured yarn orientations in the flax fibre fabric.
Suggested Citation
Yosuke Ueki & Hans Lilholt & Bo Madsen, 2020.
"Experimental evaluation of stiffness predictions of multiaxial flax fibre composites by classical laminate theory,"
PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
Handle:
RePEc:plo:pone00:0234701
DOI: 10.1371/journal.pone.0234701
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234701. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.