IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234251.html
   My bibliography  Save this article

Behavioral effects of rhythm, carrier frequency and temporal cueing on the perception of sound sequences

Author

Listed:
  • Miriam Heynckes
  • Peter De Weerd
  • Giancarlo Valente
  • Elia Formisano
  • Federico De Martino

Abstract

Regularity of acoustic rhythms allows predicting a target embedded within a stream thereby improving detection performance and reaction times in spectral detection tasks. In two experiments we examine whether temporal regularity enhances perceptual sensitivity and reduces reaction times using a temporal shift detection task. Participants detected temporal shifts embedded at different positions within a sequence of quintet–sounds. Narrowband quintets were centered around carrier frequencies of 200 Hz, 1100 Hz, or 3100 Hz and presented at presentation rates between 1–8 Hz. We compared rhythmic sequences to control conditions where periodicity was reduced or absent and tested whether perceptual benefits depend on the presentation rate, the spectral content of the sounds, and task difficulty. We found that (1) the slowest rate (1 Hz) led to the largest behavioral effect on sensitivity. (2) This sensitivity improvement is carrier-dependent, such that the largest improvement is observed for low-frequency (200 Hz) carriers compared to 1100 Hz and 3100 Hz carriers. (3) Moreover, we show that the predictive value of a temporal cue and that of a temporal rhythm similarly affect perceptual sensitivity. That is, both the cue and the rhythm induce confident temporal expectancies in contrast to an aperiodic rhythm, and thereby allow to effectively prepare and allocate attentional resources in time. (4) Lastly, periodic stimulation reduces reaction times compared to aperiodic stimulation, both at perceptual threshold as well as above threshold. Similarly, a temporal cue allowed participants to optimally prepare and thereby respond fastest. Overall, our results are consistent with the hypothesis that periodicity leads to optimized predictions and processing of forthcoming input and thus to behavioral benefits. Predictable temporally cued sounds provide a similar perceptual benefit to periodic rhythms, despite an additional uncertainty of target position within periodic sequences. Several neural mechanisms may underlie our findings, including the entrainment of oscillatory activity of neural populations.

Suggested Citation

  • Miriam Heynckes & Peter De Weerd & Giancarlo Valente & Elia Formisano & Federico De Martino, 2020. "Behavioral effects of rhythm, carrier frequency and temporal cueing on the perception of sound sequences," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0234251
    DOI: 10.1371/journal.pone.0234251
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234251
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234251&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Assaf Breska & Leon Y Deouell, 2017. "Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment," PLOS Biology, Public Library of Science, vol. 15(2), pages 1-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachel N. Denison & Karen J. Tian & David J. Heeger & Marisa Carrasco, 2024. "Anticipatory and evoked visual cortical dynamics of voluntary temporal attention," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.