IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0233569.html
   My bibliography  Save this article

Population density and habitat use of two sympatric small cats in a central Indian reserve

Author

Listed:
  • Nilanjan Chatterjee
  • Parag Nigam
  • Bilal Habib

Abstract

Despite appreciable advances in carnivore ecology, studies on small cats remain limited with carnivore research in India being skewed towards large cats. Small cats are more specialized than their larger cousins in terms of resource selection. Studies on small cat population and habitat preference are critical to evaluate their status to ensure better management and conservation. We estimated abundance of two widespread small cats, the jungle cat, and the rusty-spotted cat, and investigated their habitat associations based on camera trap captures from a central Indian tiger reserve. We predicted fine-scale habitat segregation between these sympatric species as a driver of coexistence. We used an extension of the spatial count model in a Bayesian framework approach to estimate the population density of jungle cat and rusty-spotted cat and used generalized linear models to explore their habitat associations. Densities of rusty-spotted cat and jungle cat were estimated as 6.67 (95% CI 4.07–10.74) and 4.01 (95% CI 2.65–6.12) individuals/100 km2 respectively. Forest cover and evapotranspiration were positively associated with rusty-spotted cat occurrence whereas both factors had a significant negative relation with jungle cat occurrence. The results directed habitat segregation between these small cats with affinities of rusty-spotted cat and jungle cat towards well-forested and open scrubland areas respectively. Our estimates highlight the widespread applicability of this model for density estimation of species with no individual identification. Moreover, the study outcomes can aid in targeted management decisions and serve as the baseline for species conservation as these models allow robust population estimation of elusive species along with predicting their habitat preferences.

Suggested Citation

  • Nilanjan Chatterjee & Parag Nigam & Bilal Habib, 2020. "Population density and habitat use of two sympatric small cats in a central Indian reserve," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0233569
    DOI: 10.1371/journal.pone.0233569
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233569
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0233569&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0233569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brett T. McClintock & Gary C. White & Michael F. Antolin & Daniel W. Tripp, 2009. "Estimating Abundance Using Mark–Resight When Sampling Is with Replacement or the Number of Marked Individuals Is Unknown," Biometrics, The International Biometric Society, vol. 65(1), pages 237-246, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana, Divyashree & Sartor, Caroline Charão & Chiaverini, Luca & Cushman, Samuel Alan & Kaszta, Żaneta & Ramakrishnan, Uma & Macdonald, David W., 2024. "Differentially biased sampling strategies reveal the non-stationarity of species distribution models for Indian small felids," Ecological Modelling, Elsevier, vol. 493(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray G. Efford & Christine M. Hunter, 2018. "Spatial capture–mark–resight estimation of animal population density," Biometrics, The International Biometric Society, vol. 74(2), pages 411-420, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.