IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0233280.html
   My bibliography  Save this article

Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India

Author

Listed:
  • Anurag Malik
  • Anil Kumar
  • Sinan Q Salih
  • Sungwon Kim
  • Nam Won Kim
  • Zaher Mundher Yaseen
  • Vijay P Singh

Abstract

A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system (CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales of drought information at six meteorological stations located in Uttarakhand State, India, are used. Different lead times of SPI were computed for prediction, including 1, 3, 6, 9, 12, and 24 months, with inputs abstracted by autocorrelation function (ACF) and partial-ACF (PACF) analysis at 5% significance level. The proposed CANFIS model was validated against two models: classical artificial intelligence model (e.g., multilayer perceptron neural network (MLPNN)) and regression model (e.g., multiple linear regression (MLR)). Several performance evaluation metrices (root mean square error, Nash-Sutcliffe efficiency, coefficient of correlation, and Willmott index), and graphical visualizations (scatter plot and Taylor diagram) were computed for the evaluation of model performance. Results indicated that the CANFIS model predicted the SPI better than the other models and prediction results were different for different meteorological stations. The proposed model can build a reliable expert intelligent system for predicting meteorological drought at multi-time scales and decision making for remedial schemes to cope with meteorological drought at the study stations and can help to maintain sustainable water resources management.

Suggested Citation

  • Anurag Malik & Anil Kumar & Sinan Q Salih & Sungwon Kim & Nam Won Kim & Zaher Mundher Yaseen & Vijay P Singh, 2020. "Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-31, May.
  • Handle: RePEc:plo:pone00:0233280
    DOI: 10.1371/journal.pone.0233280
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233280
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0233280&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0233280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
    2. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    3. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    4. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.