Author
Listed:
- Sanjeeva Herath
- Hongying Dai
- Jonathan Erlich
- Amy YM Au
- Kylie Taylor
- Lena Succar
- Zoltán H Endre
Abstract
Normalisation to standard reference gene(s) is essential for quantitative real-time polymerase chain reaction (RT-qPCR) to obtain reproducible and comparable results of a gene of interest (GOI) between subjects and under varying experimental conditions. There is limited evidence to support selection of the commonly used reference genes in rat ischaemic and toxicological kidney models. Employing these models, we determined the most stable reference genes by comparing 4 standard methods (NormFinder, qBase+, BestKeeper and comparative ΔCq) and developed a new 3-way linear mixed-effects model for evaluation of reference gene stability. This new technique utilises the intra-class correlation coefficient as the stability measure for multiple continuous and categorical covariates when determining the optimum normalisation factor. The model also determines confidence intervals for each candidate normalisation gene to facilitate selection and allow sample size calculation for designing experiments to identify reference genes. Of the 10 candidate reference genes tested, the geometric mean of polyadenylate-binding nuclear protein 1 (PABPN1) and beta-actin (ACTB) was the most stable reference combination. In contrast, commonly used ribosomal 18S and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were the most unstable. We compared the use of PABPN1×ACTB and 2 commonly used genes 18S and GAPDH on the expression of 4 genes of interest know to vary after renal injury and expressed by different kidney cell types (KIM-1, HIF1α, TGFβ1 and PECAM1). The less stable reference genes gave varying patterns of GOI expression in contrast to the use of the least unstable reference PABPN1×ACTB combination; this improved detection of differences in gene expression between experimental groups. Reduced within-group variation of the now more accurately normalised GOI may allow for reduced experimental group size particularly for comparison between various models. This objective selection of stable reference genes increased the reliability of comparisons within and between experimental groups.
Suggested Citation
Sanjeeva Herath & Hongying Dai & Jonathan Erlich & Amy YM Au & Kylie Taylor & Lena Succar & Zoltán H Endre, 2020.
"Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease,"
PLOS ONE, Public Library of Science, vol. 15(5), pages 1-27, May.
Handle:
RePEc:plo:pone00:0233109
DOI: 10.1371/journal.pone.0233109
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233109. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.