IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232478.html
   My bibliography  Save this article

Predicting the turning points of housing prices by combining the financial model with genetic algorithm

Author

Listed:
  • Shihai Dong
  • Yandong Wang
  • Yanyan Gu
  • Shiwei Shao
  • Hui Liu
  • Shanmei Wu
  • Mengmeng Li

Abstract

The turning points of housing prices play a significant role in the real estate market and economy. However, because multiple factors impact the market, the prediction of the turning points of housing prices faces significant challenges. To solve this problem, in this study, a historical data-based model that incorporates a multi-population genetic algorithm with elitism into the log-periodic power law model is proposed. This model overcomes the weaknesses of multivariate and univariate methods that it does not require any external factors while achieving excellent interpretations. We applied the model to the case study collected from housing prices in Wuhan, China, from December 2016 to October 2018. To verify its reliability, we compared the results of the proposed model to those of the log-periodic power law model optimized by the standard genetic algorithm and simulated annealing, the results of which indicate that the proposed model performs best in terms of prediction. Efficiently predicting and analyzing the housing prices will help the government promulgate effective policies for regulating the real estate market and protect home buyers.

Suggested Citation

  • Shihai Dong & Yandong Wang & Yanyan Gu & Shiwei Shao & Hui Liu & Shanmei Wu & Mengmeng Li, 2020. "Predicting the turning points of housing prices by combining the financial model with genetic algorithm," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0232478
    DOI: 10.1371/journal.pone.0232478
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232478
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232478&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morini, Matteo & Pellegrino, Simone, 2018. "Personal income tax reforms: A genetic algorithm approach," European Journal of Operational Research, Elsevier, vol. 264(3), pages 994-1004.
    2. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    3. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
    4. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    5. Wei, Shang-Jin & Zhang, Xiaobo & Liu, Yin, 2017. "Home ownership as status competition: Some theory and evidence," Journal of Development Economics, Elsevier, vol. 127(C), pages 169-186.
    6. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    7. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    8. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    9. Samuel Zita & Rangan Gupta, 2008. "Modeling and Forecasting the Metical-Rand Exchange Rate," The IUP Journal of Monetary Economics, IUP Publications, vol. 0(4), pages 63-90, November.
    10. Matteo Iacoviello & Stefano Neri, 2010. "Housing Market Spillovers: Evidence from an Estimated DSGE Model," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 125-164, April.
    11. Mr. Ashvin Ahuja & Lillian Cheung & Gaofeng Han & Mr. Nathan Porter & Wenlang Zhang, 2010. "Are House Prices Rising Too Fast in China?," IMF Working Papers 2010/274, International Monetary Fund.
    12. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    13. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    14. Gordon W. Crawford & Michael C. Fratantoni, 2003. "Assessing the Forecasting Performance of Regime‐Switching, ARIMA and GARCH Models of House Prices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 31(2), pages 223-243, June.
    15. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    16. Ashvin Ahuja & Lillian Cheung & Gaofeng Han & Nathan Porter & Wenlang Zhang, 2010. "Are House Prices Rising Too Fast in China?," Working Papers 1008, Hong Kong Monetary Authority.
    17. Anders Johansen & Didier Sornette, 2001. "Bubbles And Anti-Bubbles In Latin-American, Asian And Western Stock Markets: An Empirical Study," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(06), pages 853-920.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanwool Jang & Yena Song & Sungbin Sohn & Kwangwon Ahn, 2018. "Real Estate Soars and Financial Crises: Recent Stories," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
    2. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    3. Kwangwon Ahn & Hanwool Jang & Jinu Kim & Inug Ryu, 2024. "COVID-19 and REITs Crash: Predictability and Market Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1159-1172, March.
    4. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    5. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    6. Papastamatiou, Konstantinos & Karakasidis, Theodoros, 2022. "Bubble detection in Greek Stock Market: A DS-LPPLS model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Jang, Hanwool & Song, Yena & Ahn, Kwangwon, 2020. "Can government stabilize the housing market? The evidence from South Korea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    9. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    10. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    11. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    12. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    13. Hideyuki Takagi, 2021. "Exploring the Endogenous Nature of Meme Stocks Using the Log-Periodic Power Law Model and Confidence Indicator," Papers 2110.06190, arXiv.org.
    14. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    15. Zhi, Tianhao & Li, Zhongfei & Jiang, Zhiqiang & Wei, Lijian & Sornette, Didier, 2019. "Is there a housing bubble in China?," Emerging Markets Review, Elsevier, vol. 39(C), pages 120-132.
    16. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    17. Zhou, Wei & Huang, Yang & Chen, Jin, 2018. "The bubble and anti-bubble risk resistance analysis on the metal futures in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 947-957.
    18. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    19. Deng, Yongheng & Girardin, Eric & Joyeux, Roselyne, 2018. "Fundamentals and the volatility of real estate prices in China: A sequential modelling strategy," China Economic Review, Elsevier, vol. 48(C), pages 205-222.
    20. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.