Author
Listed:
- Camille Roth
- Antoine Mazières
- Telmo Menezes
Abstract
The role of recommendation algorithms in online user confinement is at the heart of a fast-growing literature. Recent empirical studies generally suggest that filter bubbles may principally be observed in the case of explicit recommendation (based on user-declared preferences) rather than implicit recommendation (based on user activity). We focus on YouTube which has become a major online content provider but where confinement has until now been little-studied in a systematic manner. We aim to contribute to the above literature by showing whether recommendation on YouTube exhibits phenomena typical of filter bubbles, tending to lower the diversity of consumed content. Starting from a diverse number of seed videos, we first describe the properties of the sets of suggested videos in order to design a sound exploration protocol able to capture latent recommendation graphs recursively induced by these suggestions. These graphs form the background of potential user navigations along non-personalized recommendations. From there, be it in topological, topical or temporal terms, we show that the landscape of what we call mean-field YouTube recommendations is often prone to confinement dynamics. Moreover, the most confined recommendation graphs i.e., potential bubbles, seem to be organized around sets of videos that garner the highest audience and thus plausibly viewing time.
Suggested Citation
Camille Roth & Antoine Mazières & Telmo Menezes, 2020.
"Tubes and bubbles topological confinement of YouTube recommendations,"
PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
Handle:
RePEc:plo:pone00:0231703
DOI: 10.1371/journal.pone.0231703
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231703. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.