Author
Listed:
- Sherry Bhalla
- Harpreet Kaur
- Rishemjit Kaur
- Suresh Sharma
- Gajendra P S Raghava
Abstract
Introduction: Recently, the rise in the incidences of thyroid cancer worldwide renders it to be the sixth most common cancer among women. Commonly, Fine Needle Aspiration biopsy predominantly facilitates the diagnosis of the nature of thyroid nodules. However, it is inconsiderable in determining the tumor’s state, i.e., benign or malignant. This study aims to identify the key RNA transcripts that can segregate the early and late-stage samples of Thyroid Carcinoma (THCA) using RNA expression profiles. Materials and methods: In this study, we used the THCA RNA-Seq dataset of The Cancer Genome Atlas, consisting of 500 cancer and 58 normal (adjacent non-tumorous) samples obtained from the Genomics Data Commons (GDC) data portal. This dataset was dissected to identify key RNA expression features using various feature selection techniques. Subsequently, samples were classified based on selected features employing different machine learning algorithms. Results: Single gene ranking based on the Area Under the Receiver Operating Characteristics (AUROC) curve identified the DCN transcript that can classify the early-stage samples from late-stage samples with 0.66 AUROC. To further improve the performance, we identified a panel of 36 RNA transcripts that achieved F1 score of 0.75 with 0.73 AUROC (95% CI: 0.62–0.84) on the validation dataset. Moreover, prediction models based on 18-features from this panel correctly predicted 75% of the samples of the external validation dataset. In addition, the multiclass model classified normal, early, and late-stage samples with AUROC of 0.95 (95% CI: 0.84–1), 0.76 (95% CI: 0.66–0.85) and 0.72 (95% CI: 0.61–0.83) on the validation dataset. Besides, a five protein-coding transcripts panel was also recognized, which segregated cancer and normal samples in the validation dataset with F1 score of 0.97 and 0.99 AUROC (95% CI: 0.91–1). Conclusion: We identified 36 important RNA transcripts whose expression segregated early and late-stage samples with reasonable accuracy. The models and dataset used in this study are available from the webserver CancerTSP (http://webs.iiitd.edu.in/raghava/cancertsp/).
Suggested Citation
Sherry Bhalla & Harpreet Kaur & Rishemjit Kaur & Suresh Sharma & Gajendra P S Raghava, 2020.
"Expression based biomarkers and models to classify early and late-stage samples of Papillary Thyroid Carcinoma,"
PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
Handle:
RePEc:plo:pone00:0231629
DOI: 10.1371/journal.pone.0231629
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231629. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.