IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231030.html
   My bibliography  Save this article

Severity assessment of accidents involving roadside trees based on occupant injury analysis

Author

Listed:
  • Guozhu Cheng
  • Rui Cheng
  • Yulong Pei
  • Liang Xu
  • Weiwei Qi

Abstract

The aims of this study were to achieve a quantitative assessment of the severity of accidents involving roadside trees on highways and to propose corresponding safety measures to reduce accident losses. This paper used the acceleration severity index (ASI), head injury criteria (HIC) and chest resultant acceleration (CRA) as indicators of occupant injuries and horizontal radii, vehicle departure speeds, tree diameters and roadside tree spacing as research variables to carry out bias collision tests between cars, trucks and trees by constructing a vehicle rigid body system and an occupant multibody system in PC-crash 10.0® simulation software. A total of 2,256 data points were collected. For straight and curved segments of highways, the occupant injury evaluation models of cars were fitted based on the CRA, and occupant injury evaluation models of trucks and cars were fitted based on the ASI. According to the Fisher optimal segmentation method, reasonable classification standards of severities of accidents involving roadside trees and the corresponding ASI and CRA thresholds were determined, and severity assessment methods for accidents involving roadside trees based on the CRA and ASI were provided. Additionally, a new index by which to evaluate the accuracy of the accident severity classification and the degree of misclassification was built and applied for the validity verification of the proposed severity assessment methods. A proportion of trucks was introduced to further improve the ASI evaluation model. For the same simulation conditions, the results show that driver chest injuries are more serious than driver head injuries and that the average ASI of cars is greater than that of trucks. The CRA and ASI have a positive linear correlation with the departure speed and a logarithmic correlation with the roadside tree diameters. The larger the spacing of roadside trees is and the smaller the horizontal radius is, the smaller the chance that a vehicle will experience a second collision and the lower the risk of occupant injury. In method validation, the evaluation results from two proposed severity assessment methods based on the CRA and ASI are consistent, and the degrees of misclassification are 4.65% and 4.26%, respectively, which verifies the accuracy of the methods proposed in this paper and confirms that the ASI can be employed as an effective index for evaluating occupant injuries in accidents involving roadside trees.

Suggested Citation

  • Guozhu Cheng & Rui Cheng & Yulong Pei & Liang Xu & Weiwei Qi, 2020. "Severity assessment of accidents involving roadside trees based on occupant injury analysis," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-22, April.
  • Handle: RePEc:plo:pone00:0231030
    DOI: 10.1371/journal.pone.0231030
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231030
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231030&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.