Author
Listed:
- Lukas Bromig
- Andreas Kremling
- Alberto Marin-Sanguino
Abstract
Systems biology applies concepts from engineering in order to understand biological networks. If such an understanding was complete, biologists would be able to design ad hoc biochemical components tailored for different purposes, which is the goal of synthetic biology. Needless to say that we are far away from creating biological subsystems as intricate and precise as those found in nature, but mathematical models and high throughput techniques have brought us a long way in this direction. One of the difficulties that still needs to be overcome is finding the right values for model parameters and dealing with uncertainty, which is proving to be an extremely difficult task. In this work, we take advantage of ensemble modeling techniques, where a large number of models with different parameter values are formulated and then tested according to some performance criteria. By finding features shared by successful models, the role of different components and the synergies between them can be better understood. We will address some of the difficulties often faced by ensemble modeling approaches, such as the need to sample a space whose size grows exponentially with the number of parameters, and establishing useful selection criteria. Some methods will be shown to reduce the predictions from many models into a set of understandable “design principles” that can guide us to improve or manufacture a biochemical network. Our proposed framework formulates models within standard formalisms in order to integrate information from different sources and minimize the dimension of the parameter space. Additionally, the mathematical properties of the formalism enable a partition of the parameter space into independent subspaces. Each of these subspaces can be paired with a set of criteria that depend exclusively on it, thus allowing a separate sampling/screening in spaces of lower dimension. By applying tests in a strict order where computationally cheaper tests are applied first to each subspace and applying computationally expensive tests to the remaining subset thereafter, the use of resources is optimized and a larger number of models can be examined. This can be compared to a complex database query where the order of the requests can make a huge difference in the processing time. The method will be illustrated by analyzing a classical model of a metabolic pathway with end-product inhibition. Even for such a simple model, the method provides novel insight.
Suggested Citation
Lukas Bromig & Andreas Kremling & Alberto Marin-Sanguino, 2020.
"Understanding biochemical design principles with ensembles of canonical non-linear models,"
PLOS ONE, Public Library of Science, vol. 15(4), pages 1-27, April.
Handle:
RePEc:plo:pone00:0230599
DOI: 10.1371/journal.pone.0230599
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Ljubisa Miskovic & Jonas Béal & Michael Moret & Vassily Hatzimanikatis, 2019.
"Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties,"
PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-29, August.
- Gaoyang Li & Li Liu & Wei Du & Huansheng Cao, 2023.
"Local flux coordination and global gene expression regulation in metabolic modeling,"
Nature Communications, Nature, vol. 14(1), pages 1-18, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230599. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.