IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230077.html
   My bibliography  Save this article

Greater lifestyle engagement is associated with better age-adjusted cognitive abilities

Author

Listed:
  • G Sophia Borgeest
  • Richard N Henson
  • Meredith Shafto
  • David Samu
  • Cam-CAN
  • Rogier A Kievit

Abstract

Previous evidence suggests that modifiable lifestyle factors, such as engagement in leisure activities, might slow the age-related decline of cognitive functions. Less is known, however, about which aspects of lifestyle might be particularly beneficial to healthy cognitive ageing, and whether they are associated with distinct cognitive domains (e.g. fluid and crystallized abilities) differentially. We investigated these questions in the cross-sectional Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data (N = 708, age 18–88), using data-driven exploratory structural equation modelling, confirmatory factor analyses, and age-residualized measures of cognitive differences across the lifespan. Specifically, we assessed the relative associations of the following five lifestyle factors on age-related differences of fluid and crystallized age-adjusted abilities: education/SES, physical health, mental health, social engagement, and intellectual engagement. We found that higher education, better physical and mental health, more social engagement and a greater degree of intellectual engagement were each individually correlated with better fluid and crystallized cognitive age-adjusted abilities. A joint path model of all lifestyle factors on crystallized and fluid abilities, which allowed a simultaneous assessment of the lifestyle domains, showed that physical health, social and intellectual engagement and education/SES explained unique, complementary variance, but mental health did not make significant contributions above and beyond the other four lifestyle factors and age. The total variance explained for fluid abilities was 14% and 16% for crystallized abilities. Our results are compatible with the hypothesis that intellectually and physically challenging as well as socially engaging activities are associated with better crystallized and fluid performance across the lifespan.

Suggested Citation

  • G Sophia Borgeest & Richard N Henson & Meredith Shafto & David Samu & Cam-CAN & Rogier A Kievit, 2020. "Greater lifestyle engagement is associated with better age-adjusted cognitive abilities," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-24, May.
  • Handle: RePEc:plo:pone00:0230077
    DOI: 10.1371/journal.pone.0230077
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230077
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0230077&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    2. David Bunce & Maya Tzur & Anusha Ramchurn & Felicity Gain & Frank W. Bond, 2008. "Mental Health and Cognitive Function in Adults Aged 18 to 92 Years," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 63(2), pages 67-74.
    3. Alan J. Gow & Alison Pattie & Ian J. Deary, 2017. "Lifecourse Activity Participation From Early, Mid, and Later Adulthood as Determinants of Cognitive Aging: The Lothian Birth Cohort 1921," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 72(1), pages 25-37.
    4. Rachel S. Newson & Eva B. Kemps, 2005. "General Lifestyle Activities as a Predictor of Current Cognition and Cognitive Change in Older Adults: A Cross-Sectional and Longitudinal Examination," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 60(3), pages 113-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    3. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    4. Ball, Laurence & Carvalho, Carlos & Evans, Christopher & Antonio Ricci, Luca, 2024. "Weighted Median Inflation Around the World: A Measure of Core Inflation," Journal of International Money and Finance, Elsevier, vol. 142(C).
    5. Stefan Seifert & Christoph Kahle & Silke Hüttel, 2021. "Price Dispersion in Farmland Markets: What Is the Role of Asymmetric Information?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1545-1568, August.
    6. Felix Thoemmes & Wang Liao & Ze Jin, 2017. "The Analysis of the Regression-Discontinuity Design in R," Journal of Educational and Behavioral Statistics, , vol. 42(3), pages 341-360, June.
    7. Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    8. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    9. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    10. Rita Yi Man Li & Herru Ching Yu Li, 2018. "Have Housing Prices Gone with the Smelly Wind? Big Data Analysis on Landfill in Hong Kong," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    11. Sunn Bush, Sarah & Cottiero, Christina & Prather, Lauren, 2024. "Zombies Ahead: Explaining the Rise of Low-Quality Election Monitoring," Institute on Global Conflict and Cooperation, Working Paper Series qt2fc2d3pr, Institute on Global Conflict and Cooperation, University of California.
    12. Christopher F. Parmeter, 2018. "Estimation of the two-tiered stochastic frontier model with the scaling property," Journal of Productivity Analysis, Springer, vol. 49(1), pages 37-47, February.
    13. Hasler Mario, 2013. "Multiple Contrasts for Repeated Measures," The International Journal of Biostatistics, De Gruyter, vol. 9(1), pages 49-61, July.
    14. David Winkelmann & Marius Ötting & Christian Deutscher & Tomasz Makarewicz, 2024. "Are Betting Markets Inefficient? Evidence From Simulations and Real Data," Journal of Sports Economics, , vol. 25(1), pages 54-97, January.
    15. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    16. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    17. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
    18. Mazzonna, Fabrizio & Peracchi, Franco, 2012. "Ageing, cognitive abilities and retirement," European Economic Review, Elsevier, vol. 56(4), pages 691-710.
    19. Mario Hasler, 2016. "Heteroscedasticity: multiple degrees of freedom vs. sandwich estimation," Statistical Papers, Springer, vol. 57(1), pages 55-68, March.
    20. repec:jss:jstsof:42:c01 is not listed on IDEAS
    21. repec:grz:wpsses:2021-03 is not listed on IDEAS
    22. Fabian Dutschkus & Christian Lukas, 2022. "Social Relationships and Group Dynamics within the Supervisory Board and their Influence on CEO Compensation," Schmalenbach Journal of Business Research, Springer, vol. 74(2), pages 163-200, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.