IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0229201.html
   My bibliography  Save this article

Maximizing multiple influences and fair seed allocation on multilayer social networks

Author

Listed:
  • Yu Chen
  • Wei Wang
  • Jinping Feng
  • Ying Lu
  • Xinqi Gong

Abstract

The dissemination of information on networks involves many important practical issues, such as the spread and containment of rumors in social networks, the spread of infectious diseases among the population, commercial propaganda and promotion, the expansion of political influence and so on. One of the most important problems is the influence-maximization problem which is to find out k most influential nodes under a certain propagate mechanism. Since the problem was proposed in 2001, many works have focused on maximizing the influence in a single network. It is a NP-hard problem and the state-of-art algorithm IMM proposed by Youze Tang et al. achieves a ratio of 63.2% of the optimum with nearly linear time complexity. In recent years, there have been some works of maximizing influence on multilayer networks, either in the situation of single or multiple influences. But most of them study seed selection strategies to maximize their own influence from the perspective of participants. In fact, the problem from the perspective of network owners is also worthy of attention. Since network participants have not had access to all information of the network for reasons such as privacy protection and corporate interests, they may have access to only part of the social network. The owners of networks can get the whole picture of the networks, and they need not only to maximize the overall influence, but also to consider allocating seeds to their customers fairly, i.e., the Fair Seed Allocation (FSA) problem. As far as we know, FSA problem has been studied on a single network, but not on multilayer networks yet. From the perspective of network owners, we propose a multiple-influence diffusion model MMIC on multilayer networks and its FSA problem. Two solutions of FSA problem are given in this paper, and we prove theoretically that our seed allocation schemes are greedy. Subsequent experiments also validate the effectiveness of our approaches.

Suggested Citation

  • Yu Chen & Wei Wang & Jinping Feng & Ying Lu & Xinqi Gong, 2020. "Maximizing multiple influences and fair seed allocation on multilayer social networks," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-19, March.
  • Handle: RePEc:plo:pone00:0229201
    DOI: 10.1371/journal.pone.0229201
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229201
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0229201&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0229201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zang, Haijuan, 2018. "The effects of global awareness on the spreading of epidemics in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1495-1506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yang & Zhu, Xuzhen & Yang, Qiwen & Tian, Hui & Cui, Qimei, 2022. "Propagation characteristic of adoption thresholds heterogeneity in double-layer networks with edge weight distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Rajagopal, Karthikeyan & Karthikeyan, Anitha, 2022. "Spiral waves and their characterization through spatioperiod and spatioenergy under distinct excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hui & Yang, Naiding & Yang, Zhao & Lin, Jianhong & Zhang, Yanlu, 2020. "The impact of firm heterogeneity and awareness in modeling risk propagation on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Jun, Seung-Pyo & Yoo, Hyoung Sun & Lee, Jae-Seong, 2021. "The impact of the pandemic declaration on public awareness and behavior: Focusing on COVID-19 google searches," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    3. Dong Wang & Yi Zhao & Hui Leng, 2020. "Dynamics of Epidemic Spreading in the Group-Based Multilayer Networks," Mathematics, MDPI, vol. 8(11), pages 1-15, October.
    4. Wu, Qingchu & Chen, Shufang, 2022. "Coupled simultaneous evolution of disease and information on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0229201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.