IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0228804.html
   My bibliography  Save this article

Can syndromic surveillance help forecast winter hospital bed pressures in England?

Author

Listed:
  • Roger A Morbey
  • Andre Charlett
  • Iain Lake
  • James Mapstone
  • Richard Pebody
  • James Sedgwick
  • Gillian E Smith
  • Alex J Elliot

Abstract

Background: Health care planners need to predict demand for hospital beds to avoid deterioration in health care. Seasonal demand can be affected by respiratory illnesses which in England are monitored using syndromic surveillance systems. Therefore, we investigated the relationship between syndromic data and daily emergency hospital admissions. Methods: We compared the timing of peaks in syndromic respiratory indicators and emergency hospital admissions, between 2013 and 2018. Furthermore, we created forecasts for daily admissions and investigated their accuracy when real-time syndromic data were included. Results: We found that syndromic indicators were sensitive to changes in the timing of peaks in seasonal disease, especially influenza. However, each year, peak demand for hospital beds occurred on either 29th or 30th December, irrespective of the timing of syndromic peaks. Most forecast models using syndromic indicators explained over 70% of the seasonal variation in admissions (adjusted R square value). Forecast errors were reduced when syndromic data were included. For example, peak admissions for December 2014 and 2017 were underestimated when syndromic data were not used in models. Conclusion: Due to the lack of variability in the timing of the highest seasonal peak in hospital admissions, syndromic surveillance data do not provide additional early warning of timing. However, during atypical seasons syndromic data did improve the accuracy of forecast intensity.

Suggested Citation

  • Roger A Morbey & Andre Charlett & Iain Lake & James Mapstone & Richard Pebody & James Sedgwick & Gillian E Smith & Alex J Elliot, 2020. "Can syndromic surveillance help forecast winter hospital bed pressures in England?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0228804
    DOI: 10.1371/journal.pone.0228804
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228804
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0228804&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0228804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Prithwish Chakraborty & Bryan Lewis & Stephen Eubank & John S Brownstein & Madhav Marathe & Naren Ramakrishnan, 2018. "What to know before forecasting the flu," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-7, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.
    2. Yu-Chih Wei & Yan-Ling Ou & Jianqiang Li & Wei-Chen Wu, 2022. "Forecasting the Potential Number of Influenza-like Illness Cases by Fusing Internet Public Opinion," Sustainability, MDPI, vol. 14(5), pages 1-24, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0228804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.