Author
Listed:
- Nengchao Lyu
- Yue Cao
- Chaozhong Wu
- Alieu Freddie Thomas
- Xu Wang
Abstract
In order to study driving performance at the opening section of median strip (hereafter OSMS) on the freeway capacity expansion project, this study separately controlled 9 different simulated experimental scenarios of OSMS length and freeway traffic flow. 25 participants were recruited to perform 225 simulated driving tests using the driving simulator, and the analysis of variance (ANOVA) was used to analyze the driving characteristics which can represent the safety context. The results show that the safety parameters of driving are different when the length of OSMS and the traffic flow are different. When the traffic flow is low or moderate, the OSMS length can significantly affect the speed of the vehicle and the maximum values of time to collision. The higher the traffic flow, the smaller the minimum values of time headway. As the length of the OSMS decreases, the vehicles are more generally concentrated at the end of the opening area with the minimum values of time headway. The study also found that when the traffic volume is high, the impact of the OSMS length on driving performance will be weakened. In addition, the OSMS length and the traffic flow have little impact on driving comfort. Additionally, when the traffic flow is low or moderate, the opening length can significantly affect the driving behavior and safety of the vehicle. However, when the traffic volume is high, the impact of the opening length on them will be relatively weakened to some extent. Therefore, it is advised that in the case of freeways with large traffic volume, merely extending the length of the opening section does not necessarily optimize safety. Rather, the actual traffic density of the road should be carefully considered before a design length is adopted.
Suggested Citation
Nengchao Lyu & Yue Cao & Chaozhong Wu & Alieu Freddie Thomas & Xu Wang, 2020.
"Driving behavior and safety analysis at OSMS section for merged, one-way freeway based on simulated driving safety analysis of driving behaviour,"
PLOS ONE, Public Library of Science, vol. 15(2), pages 1-20, February.
Handle:
RePEc:plo:pone00:0228238
DOI: 10.1371/journal.pone.0228238
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0228238. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.