Author
Listed:
- Sa’ed Abed
- Ali A M R Behiry
- Imtiaz Ahmad
Abstract
Approximate computing is an emerging design paradigm that offers trade-offs between output accuracy and computation efforts by exploiting some applications’ intrinsic error resiliency. Computation of error metrics is of paramount importance in approximate circuits to measure the degree of approximation. Most of the existing techniques for evaluating error metrics apply simulations which may not be effective for evaluation of large complex designs because of an immense increase in simulation runtime and a decrease in accuracy. To address these deficiencies, we present a novel methodology that employs SAT (Boolean satisfiability) solvers for fast and accurate determination of error metrics specifically for the calculation of an average-case error and the maximum error rate in functionally approximated circuits. The proposed approach identifies the set of all errors producing assignments to gauge the quality of approximate circuits for real-life applications. Additionally, the proposed approach provides a test generation method to facilitate design choices, and acts as an important guide to debug the approximate circuits to discover and locate the errors. The effectiveness of the approach is demonstrated by evaluating the error metrics of several benchmark-approximated adders of different sizes. Experimental results on benchmark circuits show that the proposed SAT-based methodology accurately determines the maximum error rate and an average-case error within acceptable CPU execution time in one go, and further provides a log of error-generating input assignments.
Suggested Citation
Sa’ed Abed & Ali A M R Behiry & Imtiaz Ahmad, 2020.
"Error metrics determination in functionally approximated circuits using SAT solvers,"
PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
Handle:
RePEc:plo:pone00:0227745
DOI: 10.1371/journal.pone.0227745
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227745. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.