IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226945.html
   My bibliography  Save this article

The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014

Author

Listed:
  • Romrawin Chumpu
  • Nirattaya Khamsemanan
  • Cholwich Nattee

Abstract

Dengue and dengue hemorrhagic pose significant burdens in many tropical countries. Dengue incidences have perpetually increased, leading to an annual (uncertain) peak. Dengue cases cause an enormous public health problem in Thailand because there is no anti-viral drug against the dengue virus. Searching for means to reduce the dengue incidences is a challenging and appropriate strategy for primary prevention in a dengue outbreak. This study constructs the best predictive model from past statistical dengue incidences at the provincial level and studies the relationships among dengue incidences and weather variables. We conducted experiments for 65 provinces (out of 77 provinces) in Thailand since there is no dengue information for the remaining provinces. Predictive models were constructed using weekly data during 2001-2014. The training set are data during 2001-2013, and the test set is the data from 2014. Collected data were separated into two parts: current dengue cases as the dependent variable, and weather variables and previous dengue cases as the independent variables. Eight weather variables are used in our models: average pressure, maximum temperature, minimum temperature, average humidity, precipitation, vaporization, wind direction, wind power. Each weather variable includes the current week and one to three weeks of lag time. A total of 32 independent weather variables are used for each province. The previous one to three weeks of dengue cases are also used as independent variables. There is a total of 35 independent variables. Predictive models were constructed using five methods: Poisson regression, negative binomial regression, quasi-likelihood regression, ARIMA(3,1,4) and SARIMA(2,0,1)(0,2,0). The best model is determined by combinations of 1–12 variables, which are 232,989,800 models for each province. We construct a total of 15,144,337,000 models. The best model is selected by the average from high to low of the coefficient of determination (R2) and the lowest root mean square error (RMSE). From our results, the one-week lag previous case variable is the most frequent in 55 provinces out of a total of 65 provinces (coefficient of determinations with a minimum of 0.257 and a maximum of 0.954, average of 0.6383, 95% CI: 0.57313 to 0.70355). The most influential weather variable is precipitation, which is used in most of the provinces, followed by wind direction, wind power, and barometric pressure. The results confirm the common knowledge that dengue incidences occur most often during the rainy season. It also shows that wind direction, wind power, and barometric pressure also have influences on the number of dengue cases. These three weather variables may help adult mosquitos to survive longer and spread dengue. In conclusion, The most influential factor for further cases is the number of dengue cases. However, weather variables are also needed to obtain better results. Predictions of the number of dengue cases should be done locally, not at the national level. The best models of different provinces use different sets of weather variables. Our model has an accuracy that is sufficient for the real prediction of future dengue incidences, to prepare for and protect against severe dengue outbreaks.

Suggested Citation

  • Romrawin Chumpu & Nirattaya Khamsemanan & Cholwich Nattee, 2019. "The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-27, December.
  • Handle: RePEc:plo:pone00:0226945
    DOI: 10.1371/journal.pone.0226945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226945
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazni Baharom & Norfazilah Ahmad & Rozita Hod & Fadly Syah Arsad & Fredolin Tangang, 2021. "The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review," IJERPH, MDPI, vol. 18(21), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.