Author
Listed:
- Jing Zhang
- Pei-Wei Tsai
- Xingsi Xue
- Xiucai Ye
- Shunmiao Zhang
Abstract
The fundamental utility of the Large-Scale Visual Sensor Networks (LVSNs) is to monitor specified events and to transmit the detected information back to the sink for achieving the data aggregation purpose. However, the events of interest are usually not uniformly distributed but frequently detected in certain regions in real-world applications. It implies that when the events frequently picked up by the sensors in the same region, the transmission load of LVSNs is unbalanced and potentially cause the energy hole problem. To overcome this kind of problem for network lifetime, a Comprehensive Visual Data Gathering Network Architecture (CDNA), which is the first comparatively integrated architecture for LVSNs is designed in this paper. In CDNA, a novel α-hull based event location algorithm, which is oriented from the geometric model of α-hull, is designed for accurately and efficiently detect the location of the event. In addition, the Chi-Square distribution event-driven gradient deployment method is proposed to reduce the unbalanced energy consumption for alleviating energy hole problem. Moreover, an energy hole repairing method containing an efficient data gathering tree and a movement algorithm is proposed to ensure the efficiency of transmitting and solving the energy hole problem. Simulations are made for examining the performance of the proposed architecture. The simulation results indicate that the performance of CDNA is better than the previous algorithms in the realistic LVSN environment, such as the significant improvement of the network lifetime.
Suggested Citation
Jing Zhang & Pei-Wei Tsai & Xingsi Xue & Xiucai Ye & Shunmiao Zhang, 2020.
"A Comprehensive Data Gathering Network Architecture in Large-Scale Visual Sensor Networks,"
PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
Handle:
RePEc:plo:pone00:0226649
DOI: 10.1371/journal.pone.0226649
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226649. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.