Predicting the occurrence of surgical site infections using text mining and machine learning
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0226272
Download full text from publisher
References listed on IDEAS
- R Andrew Taylor & Christopher L Moore & Kei-Hoi Cheung & Cynthia Brandt, 2018. "Predicting urinary tract infections in the emergency department with machine learning," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.
- Zhuoran Wang & Anoop D Shah & A Rosemary Tate & Spiros Denaxas & John Shawe-Taylor & Harry Hemingway, 2012. "Extracting Diagnoses and Investigation Results from Unstructured Text in Electronic Health Records by Semi-Supervised Machine Learning," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jens Kjølseth Møller & Martin Sørensen & Christian Hardahl, 2021. "Prediction of risk of acquiring urinary tract infection during hospital stay based on machine-learning: A retrospective cohort study," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.