IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226027.html
   My bibliography  Save this article

Screening colonoscopy and flexible sigmoidoscopy for reduction of colorectal cancer incidence: A case-control study

Author

Listed:
  • Cynthia W Ko
  • V Paul Doria-Rose
  • Michael J Barrett
  • Aruna Kamineni
  • Lindsey Enewold
  • Noel S Weiss

Abstract

Background: Flexible sigmoidoscopy and colonoscopy are both recommended colorectal cancer screening options, but their relative effectiveness needs clarification. The aim of this study was to compare the effectiveness of colonoscopy and flexible sigmoidoscopy for reduction of colorectal cancer incidence. Methods: We conducted a case-control study within the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database. Cases were subjects age 70–85 years in the SEER-Medicare database diagnosed with CRC during 2004–2013. Up to 3 controls were matched to each case by birth year, sex, race, and SEER region. Receipt of screening colonoscopy or flexible sigmoidoscopy was ascertained from Medicare claims. Conditional logistic regression models were developed to estimate the odds ratios (ORs) and 95% confidence intervals (CI) for a history of screening in cases vs. controls. We conducted secondary analyses by sex, race, endoscopist characteristics, and with varying timing and duration of the look-back period. Results: Receipt of screening colonoscopy and sigmoidoscopy was associated with a 59% (OR 0.41, 95%CI 0.39, 0.43) and 22% reduction (OR 0.78, 95%CI 0.67, 0.92) in colorectal cancer incidence, respectively. Colonoscopy was associated with greater reduction in the distal colorectal cancer incidence (OR 0.22, 95%CI 0.20, 0.24) than proximal colorectal cancer incidence (OR 0.62, 95%CI 0.59, 0.66). Sigmoidoscopy was associated with a 52% reduction in distal colorectal cancer incidence (OR 0.48, 95%CI 0.37, 0.63), but with no reduction in proximal colorectal cancer incidence. These associations were stronger in men than in women. No differences by race or endoscopist characteristics were observed. Conclusion: Both screening colonoscopy and sigmoidoscopy were associated with reductions in overall colorectal cancer incidence, with a greater magnitude of reduction observed with colonoscopy.

Suggested Citation

  • Cynthia W Ko & V Paul Doria-Rose & Michael J Barrett & Aruna Kamineni & Lindsey Enewold & Noel S Weiss, 2019. "Screening colonoscopy and flexible sigmoidoscopy for reduction of colorectal cancer incidence: A case-control study," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0226027
    DOI: 10.1371/journal.pone.0226027
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226027
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226027&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karen M. Kuntz & Iris Lansdorp-Vogelaar & Carolyn M. Rutter & Amy B. Knudsen & Marjolein van Ballegooijen & James E. Savarino & Eric J. Feuer & Ann G. Zauber, 2011. "A Systematic Comparison of Microsimulation Models of Colorectal Cancer," Medical Decision Making, , vol. 31(4), pages 530-539, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & John Silberholz & Thomas Trikalinos, 2018. "Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening," Health Care Management Science, Springer, vol. 21(1), pages 105-118, March.
    2. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    3. Brian M Lang & Jack Kuipers & Benjamin Misselwitz & Niko Beerenwinkel, 2020. "Predicting colorectal cancer risk from adenoma detection via a two-type branching process model," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-23, February.
    4. Marjolein van Ballegooijen & Carolyn M. Rutter & Amy B. Knudsen & Ann G. Zauber & James E. Savarino & Iris Lansdorp-Vogelaar & Rob Boer & Eric J. Feuer & J. Dik F. Habbema & Karen M. Kuntz, 2011. "Clarifying Differences in Natural History between Models of Screening," Medical Decision Making, , vol. 31(4), pages 540-549, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.