IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225317.html
   My bibliography  Save this article

An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences

Author

Listed:
  • Siquan Hu
  • Ruixiong Ma
  • Haiou Wang

Abstract

As the number of known proteins has expanded, how to accurately identify DNA binding proteins has become a significant biological challenge. At present, various computational methods have been proposed to recognize DNA-binding proteins from only amino acid sequences, such as SVM, DNABP and CNN-RNN. However, these methods do not consider the context in amino acid sequences, which makes it difficult for them to adequately capture sequence features. In this study, a new method that coordinates a bidirectional long-term memory recurrent neural network and a convolutional neural network, called CNN-BiLSTM, is proposed to identify DNA binding proteins. The CNN-BiLSTM model can explore the potential contextual relationships of amino acid sequences and obtain more features than can traditional models. The experimental results show that the CNN-BiLSTM achieves a validation set prediction accuracy of 96.5%—7.8% higher than that of SVM, 9.6% higher than that of DNABP and 3.7% higher than that of CNN-RNN. After testing on 20,000 independent samples provided by UniProt that were not involved in model training, the accuracy of CNN-BiLSTM reached 94.5%—12% higher than that of SVM, 4.9% higher than that of DNABP and 4% higher than that of CNN-RNN. We visualized and compared the model training process of CNN-BiLSTM with that of CNN-RNN and found that the former is capable of better generalization from the training dataset, showing that CNN-BiLSTM has a wider range of adaptations to protein sequences. On the test set, CNN-BiLSTM has better credibility because its predicted scores are closer to the sample labels than are those of CNN-RNN. Therefore, the proposed CNN-BiLSTM is a more powerful method for identifying DNA-binding proteins.

Suggested Citation

  • Siquan Hu & Ruixiong Ma & Haiou Wang, 2019. "An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0225317
    DOI: 10.1371/journal.pone.0225317
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225317
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225317&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisa Van den Broeck & Dinesh Kiran Bhosale & Kuncheng Song & Cássio Flavio Fonseca de Lima & Michael Ashley & Tingting Zhu & Shanshuo Zhu & Brigitte Van De Cotte & Pia Neyt & Anna C. Ortiz & Tiffany R, 2023. "Functional annotation of proteins for signaling network inference in non-model species," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.