IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225245.html
   My bibliography  Save this article

A robust multi-objective optimization framework to capture both cellular and intercellular properties in cardiac cellular model tuning: Analyzing different regions of membrane resistance profile in parameter fitting

Author

Listed:
  • Elnaz Pouranbarani
  • Rodrigo Weber dos Santos
  • Anders Nygren

Abstract

Mathematical models of cardiac cells have been established to broaden understanding of cardiac function. In the process of developing electrophysiological models for cardiac myocytes, precise parameter tuning is a crucial step. The membrane resistance (Rm) is an essential feature obtained from cardiac myocytes. This feature reflects intercellular coupling and affects important phenomena, such as conduction velocity, and early after-depolarizations, but it is often overlooked during the phase of parameter fitting. Thus, the traditional parameter fitting that only includes action potential (AP) waveform may yield incorrect values for Rm. In this paper, a novel multi-objective parameter fitting formulation is proposed and tested that includes different regions of the Rm profile as additional objective functions for optimization. As Rm depends on the transmembrane voltage (Vm) and exhibits singularities for some specific values of Vm, analyses are conducted to carefully select the regions of interest for the proper characterization of Rm. Non-dominated sorting genetic algorithm II is utilized to solve the proposed multi-objective optimization problem. To verify the efficacy of the proposed problem formulation, case studies and comparisons are carried out using multiple models of human cardiac ventricular cells. Results demonstrate Rm is correctly reproduced by the tuned cell models after considering the curve of Rm obtained from the late phase of repolarization and Rm value calculated in the rest phase as additional objectives. However, relative deterioration of the AP fit is observed, demonstrating trade-off among the objectives. This framework can be useful for a wide range of applications, including the parameters fitting phase of the cardiac cell model development and investigation of normal and pathological scenarios in which reproducing both cellular and intercellular properties are of great importance.

Suggested Citation

  • Elnaz Pouranbarani & Rodrigo Weber dos Santos & Anders Nygren, 2019. "A robust multi-objective optimization framework to capture both cellular and intercellular properties in cardiac cellular model tuning: Analyzing different regions of membrane resistance profile in pa," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0225245
    DOI: 10.1371/journal.pone.0225245
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225245
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225245&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Montes Novaes & Enrique Alvarez-Lacalle & Sergio Alonso Muñoz & Rodrigo Weber dos Santos, 2022. "An ensemble of parameters from a robust Markov-based model reproduces L-type calcium currents from different human cardiac myocytes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-26, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.