IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225022.html
   My bibliography  Save this article

Estimation of free-roaming domestic dog population size: Investigation of three methods including an Unmanned Aerial Vehicle (UAV) based approach

Author

Listed:
  • Charlotte Warembourg
  • Monica Berger-González
  • Danilo Alvarez
  • Filipe Maximiano Sousa
  • Alexis López Hernández
  • Pablo Roquel
  • Joe Eyerman
  • Merlin Benner
  • Salome Dürr

Abstract

Population size estimation is performed for several reasons including disease surveillance and control, for example to design adequate control strategies such as vaccination programs or to estimate a vaccination campaign coverage. In this study, we aimed at investigating the possibility of using Unmanned Aerial Vehicles (UAV) to estimate the size of free-roaming domestic dog (FRDD) populations and compare the results with two regularly used methods for population estimations: foot-patrol transect survey and the human: dog ratio estimation. Three studies sites of one square kilometer were selected in Petén department, Guatemala. A door-to-door survey was conducted in which all available dogs were marked with a collar and owner were interviewed. The day after, UAV flight were performed twice during two consecutive days per study site. The UAV’s camera was set to regularly take pictures and cover the entire surface of the selected areas. Simultaneously to the UAV’s flight, a foot-patrol transect survey was performed and the number of collared and non-collared dogs were recorded. Data collected during the interviews and the number of dogs counted during the foot-patrol transects informed a capture-recapture (CR) model fit into a Bayesian inferential framework to estimate the dog population size, which was found to be 78, 259, and 413 in the three study sites. The difference of the CR model estimates compared to previously available dog census count (110 and 289) can be explained by the fact that the study population addressed by the different methods differs. The human: dog ratio covered the same study population as the dog census and tended to underestimate the FRDD population size (97 and 161). Under the conditions within this study, the total number of dogs identified on the UAV pictures was 11, 96, and 71 for the three regions (compared to the total number of dogs counted during the foot-patrol transects of 112, 354 and 211). In addition, the quality of the UAV pictures was not sufficient to assess the presence of a mark on the spotted dogs. Therefore, no CR model could be implemented to estimate the size of the FRDD using UAV. We discussed ways for improving the use of UAV for this purpose, such as flying at a lower altitude in study area wisely chosen. We also suggest to investigate the possibility of using infrared camera and automatic detection of the dogs to increase visibility of the dogs in the pictures and limit workload of finding them. Finally, we discuss the need of using models, such as spatial capture-recapture models to obtain reliable estimates of the FRDD population. This publication may provide helpful directions to design dog population size estimation methods using UAV.

Suggested Citation

  • Charlotte Warembourg & Monica Berger-González & Danilo Alvarez & Filipe Maximiano Sousa & Alexis López Hernández & Pablo Roquel & Joe Eyerman & Merlin Benner & Salome Dürr, 2020. "Estimation of free-roaming domestic dog population size: Investigation of three methods including an Unmanned Aerial Vehicle (UAV) based approach," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
  • Handle: RePEc:plo:pone00:0225022
    DOI: 10.1371/journal.pone.0225022
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225022
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225022&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David L. Borchers & Tiago A. Marques, 2017. "From distance sampling to spatial capture–recapture," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 475-494, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Langrock & David L. Borchers, 2017. "Guest editors’ introduction to the special issue on “Ecological Statistics”," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 345-347, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.