IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224684.html
   My bibliography  Save this article

User abnormal behavior recommendation via multilayer network

Author

Listed:
  • Chengyun Song
  • Weiyi Liu
  • Zhining Liu
  • Xiaoyang Liu

Abstract

With the growing popularity of online services such as online banking and online shopping, one of the essential research topics is how to build a privacy-preserving user abnormal behavior recommendation system. However, a machine-learning based system may present a dilemma. On one aspect, such system requires large volume of features to pre-train the model, but on another aspect, it is challenging to design usable features without looking to plaintext private data. In this paper, we propose an unorthodox approach involving graph analysis to resolve this dilemma and build a novel private-preserving recommendation system under a multilayer network framework. In experiments, we use a large, state-of-the-art dataset (containing more than 40,000 nodes and 43 million encrypted features) to evaluate the recommendation ability of our system on abnormal user behavior, yielding an overall precision rate of around 0.9, a recall rate of 1.0, and an F1-score of around 0.94. Also, we have also reported a linear time complexity for our system. Last, we deploy our system on the “Wenjuanxing” crowd-sourced system and “Amazon Mechanical Turk” for other users to evaluate in all aspects. The result shows that almost all feedbacks have achieved up to 85% satisfaction.

Suggested Citation

  • Chengyun Song & Weiyi Liu & Zhining Liu & Xiaoyang Liu, 2019. "User abnormal behavior recommendation via multilayer network," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0224684
    DOI: 10.1371/journal.pone.0224684
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224684
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224684&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Loe, Chuan Wen & Jensen, Henrik Jeldtoft, 2015. "Comparison of communities detection algorithms for multiplex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 29-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.