IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0223837.html
   My bibliography  Save this article

Coordination of human movements resulting in motor strategies exploited by skilled players during a throwing task

Author

Listed:
  • Bao Nguyen Tran
  • Shiro Yano
  • Toshiyuki Kondo

Abstract

In this study, we investigated the underlying mechanisms of a motor system that affects skills and strategies of expert dart throwers. Eight experts participated in our experiment and each subject performed 42 throws. Kinematics of the shoulder, elbow, wrist, and dart were recorded by six high-speed cameras (200 Hz). The vertical error curve over time was calculated based on both hand and dart trajectories to clarify their relationship and interaction, which could attribute to their skills. Moreover, the kinematics of the dart (speed and direction) and angular kinematics of the elbow and wrist at the time of release were investigated to elucidate which parameters constitute the throwing strategies of experts. Experimental results showed that expert’s throwing can be classified into two strategies, i.e., reducing timing sensitivity and reducing timing error. These strategies were derived from the spatial and temporal controls of the hand trajectory. Moreover, we confirmed that the speed of the dart and angular acceleration of the wrist joint at the time of release were highly correlated with the time-window for successful release. These results imply that the two strategies are characterized not only by a spatiotemporal relationship between the hand and dart trajectories, but also by relationships with release kinematic parameters of the proximal joint and the dart. Understanding characteristics which lead to strategies of skilled throwers would provide effective training methodology for beginners.

Suggested Citation

  • Bao Nguyen Tran & Shiro Yano & Toshiyuki Kondo, 2019. "Coordination of human movements resulting in motor strategies exploited by skilled players during a throwing task," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0223837
    DOI: 10.1371/journal.pone.0223837
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223837
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223837&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0223837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dagmar Sternad & Masaki O Abe & Xiaogang Hu & Hermann Müller, 2011. "Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    2. Paolo Tommasino & Antonella Maselli & Domenico Campolo & Francesco Lacquaniti & Andrea d’Avella, 2021. "A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.
    3. Gregory Dam & Konrad Kording & Kunlin Wei, 2013. "Credit Assignment during Movement Reinforcement Learning," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    4. Takanori Kikumoto & Shunsuke Suzuki & Tomoya Takabayashi & Masayoshi Kubo, 2023. "Center of Pressure Deviation during Posture Transition in Athletes with Chronic Ankle Instability," IJERPH, MDPI, vol. 20(8), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0223837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.