IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0222764.html
   My bibliography  Save this article

Model-based QTL detection is sensitive to slight modifications in model formulation

Author

Listed:
  • Caterina Barrasso
  • Mohamed-Mahmoud Memah
  • Michel Génard
  • Bénédicte Quilot-Turion

Abstract

Classical crop models have been developed to predict crop yield and quality, and they are based on physiological and environmental inputs. After molecular discoveries, models should integrate genetic variation to allow predictions that are more genotype-dependent. An interesting approach, Quantitative Trait Locus (QTL)-based ecophysiological modeling, has shown promising results for the design of ideotypes that are adapted to biotic and abiotic stresses, but there are still limitations to attaining a fully integrated model. The aim of this case study is to clarify the impact of choosing different model equations (closely related and with different numbers of parameters) and optimization methods on the detection of QTLs controlling the parameters of crop growth. Different growth equations were parameterized based on a genetic population by following different approaches. The correlations between parameters were analyzed, and two different strategies were adopted to address the correlation issue. QTL analysis was performed on the optimized values of the parameters of the growth equations and on the observed dry mass (DM) data to validate the QTLs detected. Overall, models and strategies resulted in different QTLs being detected. Similar LOD profiles but with peaks of different heights were observed, some of which were significant, resulting in different numbers of QTLs. In some cases, peaks had slightly different positions or were absent. Even closely related growth models led to the detection of different QTLs. The goodness of fit and complexity of the growth models were found to be insufficient to select the best model. Calculating parameters independently of observed data may not be a good strategy, whereas setting parameters independent of the genotype is recommended. Given the large-scale global optimization problem and the strong correlations between parameters, the two algorithms tested showed poor performance. Currently, the lack of effective algorithms is the main obstacle to answering the question posed. The authors therefore suggest testing different model formulations and comparing the QTLs detected before choosing the best formulation to use in an ecophysiological modeling approach based on QTLs.

Suggested Citation

  • Caterina Barrasso & Mohamed-Mahmoud Memah & Michel Génard & Bénédicte Quilot-Turion, 2019. "Model-based QTL detection is sensitive to slight modifications in model formulation," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-24, October.
  • Handle: RePEc:plo:pone00:0222764
    DOI: 10.1371/journal.pone.0222764
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222764
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0222764&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0222764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boote, K. J. & Kropff, M. J. & Bindraban, P. S., 2001. "Physiology and modelling of traits in crop plants: implications for genetic improvement," Agricultural Systems, Elsevier, vol. 70(2-3), pages 395-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Paleari & G. Cappelli & S. Bregaglio & M. Acutis & M. Donatelli & G. Sacchi & E. Lupotto & M. Boschetti & G. Manfron & R. Confalonieri, 2015. "District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios," Climatic Change, Springer, vol. 132(4), pages 661-675, October.
    2. Piara Singh & S. Nedumaran & B. Ntare & K. Boote & N. Singh & K. Srinivas & M. Bantilan, 2014. "Potential benefits of drought and heat tolerance in groundnut for adaptation to climate change in India and West Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(5), pages 509-529, June.
    3. Lamsal, Abhishes & Welch, S.M. & Jones, J.W. & Boote, K.J. & Asebedo, Antonio & Crain, Jared & Wang, Xu & Boyer, Will & Giri, Anju & Frink, Elizabeth & Xu, Xuan & Gundy, Garrison & Ou, Junjun & Arachc, 2017. "Efficient crop model parameter estimation and site characterization using large breeding trial data sets," Agricultural Systems, Elsevier, vol. 157(C), pages 170-184.
    4. Salmerόn, Montserrat & Purcell, Larry C. & Vories, Earl D. & Shannon, Grover, 2017. "Simulation of genotype-by-environment interactions on irrigated soybean yields in the U.S. Midsouth," Agricultural Systems, Elsevier, vol. 150(C), pages 120-129.
    5. Anothai, J. & Patanothai, A. & Pannangpetch, K. & Jogloy, S. & Boote, K.J. & Hoogenboom, G., 2008. "Reduction in data collection for determination of cultivar coefficients for breeding applications," Agricultural Systems, Elsevier, vol. 96(1-3), pages 195-206, March.
    6. Kleinwechter, Ulrich & Gastelo, Manuel & Ritchie, Joe & Nelson, Gerald & Asseng, Senthold, 2016. "Simulating cultivar variations in potato yields for contrasting environments," Agricultural Systems, Elsevier, vol. 145(C), pages 51-63.
    7. Lopez, Jose R. & Erickson, John E. & Asseng, Senthold & Bobeda, Edmundo Lopez, 2017. "Modification of the CERES grain sorghum model to simulate optimum sweet sorghum rooting depth for rainfed production on coarse textured soils in a sub-tropical environment," Agricultural Water Management, Elsevier, vol. 181(C), pages 47-55.
    8. Kropff, M. J. & Bouma, J. & Jones, J. W., 2001. "Systems approaches for the design of sustainable agro-ecosystems," Agricultural Systems, Elsevier, vol. 70(2-3), pages 369-393.
    9. Salmerón, Montserrat & Purcell, Larry C., 2016. "Simplifying the prediction of phenology with the DSSAT-CROPGRO-soybean model based on relative maturity group and determinacy," Agricultural Systems, Elsevier, vol. 148(C), pages 178-187.
    10. Khan, Muhammad S. & Yin, Xinyou & van der Putten, Peter E.L. & Struik, Paul C., 2014. "An ecophysiological model analysis of yield differences within a set of contrasting cultivars and an F1 segregating population of potato (Solanum tuberosum L.) grown under diverse environments," Ecological Modelling, Elsevier, vol. 290(C), pages 146-154.
    11. He, Jianqiang & Dukes, Michael D. & Hochmuth, George J. & Jones, James W. & Graham, Wendy D., 2012. "Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 109(C), pages 61-70.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.