Author
Listed:
- Shanchen Pang
- Shuo Wang
- Alfonso Rodríguez-Patón
- Pibao Li
- Xun Wang
Abstract
Artificial intelligence (AI) tools have been applied to diagnose or predict disease risk from medical images with recent data disclosure actions, but few of them are designed for mobile terminals due to the limited computational power and storage capacity of mobile devices. In this work, a novel AI diagnostic system is proposed for cholelithiasis recognition on mobile devices with Android platform. To this aim, a data set of CT images of cholelithiasis is firstly collected from The Third Hospital of Shandong Province, China, and then we technically use histogram equalization to preprocess these CT images. As results, a lightweight convolutional neural network is obtained in a constructive way to extract cholelith features and recognize gallstones. In terms of implementation, we compile Java and C++ to adapt to the application of deep learning algorithm on mobile devices with Android platform. Noted that, the training task is completed offline on PC, but cholelithiasis recognition tasks are performed on mobile terminals. We evaluate and compare the performance of our MobileNetV2 with MobileNetV1, Single Shot Detector (SSD), YOLOv2 and original SSD (with VGG-16) as feature extractors for object detection. It is achieved that our MobileNetV2 achieve similar accuracy rate, about 91% with the other four methods, but the number of parameters used is reduced from 36.1M (SSD 300, SSD512), 50.7M (Yolov2) and 5.1M (MobileNetV1) to 4.3M (MobileNetV2). The complete process on testing mobile devices, including Virtual machine, Xiaomi 7 and Htc One M8 can be controlled within 4 seconds in recognizing cholelithiasis as well as the degree of the disease.
Suggested Citation
Shanchen Pang & Shuo Wang & Alfonso Rodríguez-Patón & Pibao Li & Xun Wang, 2019.
"An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network,"
PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
Handle:
RePEc:plo:pone00:0221720
DOI: 10.1371/journal.pone.0221720
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221720. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.