IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221347.html
   My bibliography  Save this article

Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network

Author

Listed:
  • Rin Sato
  • Takashi Ishida

Abstract

In protein tertiary structure prediction, model quality assessment programs (MQAPs) are often used to select the final structural models from a pool of candidate models generated by multiple templates and prediction methods. The 3-dimensional convolutional neural network (3DCNN) is an expansion of the 2DCNN and has been applied in several fields, including object recognition. The 3DCNN is also used for MQA tasks, but the performance is low due to several technical limitations related to protein tertiary structures, such as orientation alignment. We proposed a novel single-model MQA method based on local structure quality evaluation using a deep neural network containing 3DCNN layers. The proposed method first assesses the quality of local structures for each residue and then evaluates the quality of whole structures by integrating estimated local qualities. We analyzed the model using the CASP11, CASP12, and 3D-Robot datasets and compared the performance of the model with that of the previous 3DCNN method based on whole protein structures. The proposed method showed a significant improvement compared to the previous 3DCNN method for multiple evaluation measures. We also compared the proposed method to other state-of-the-art methods. Our method showed better performance than the previous 3DCNN-based method and comparable accuracy as the current best single-model methods; particularly, in CASP11 stage2, our method showed a Pearson coefficient of 0.486, which was better than those of the best single-model methods (0.366–0.405). A standalone version of the proposed method and data files are available at https://github.com/ishidalab-titech/3DCNN_MQA.

Suggested Citation

  • Rin Sato & Takashi Ishida, 2019. "Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0221347
    DOI: 10.1371/journal.pone.0221347
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221347
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221347&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balachandran Manavalan & Juyong Lee & Jooyoung Lee, 2014. "Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clare E West & Saulo H P de Oliveira & Charlotte M Deane, 2019. "RFQAmodel: Random Forest Quality Assessment to identify a predicted protein structure in the correct fold," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.