IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220879.html
   My bibliography  Save this article

Reporting and analysis of repeated measurements in preclinical animals experiments

Author

Listed:
  • Jing Zhao
  • Chong Wang
  • Sarah C Totton
  • Jonah N Cullen
  • Annette M O’Connor

Abstract

A common feature of preclinical animal experiments is repeated measurement of the outcome, e.g., body weight measured in mice pups weekly for 20 weeks. Separate time point analysis or repeated measures analysis approaches can be used to analyze such data. Each approach requires assumptions about the underlying data and violations of these assumptions have implications for estimation of precision, and type I and type II error rates. Given the ethical responsibilities to maximize valid results obtained from animals used in research, our objective was to evaluate approaches to reporting repeated measures design used by investigators and to assess how assumptions about variation in the outcome over time impact type I and II error rates and precision of estimates. We assessed the reporting of repeated measures designs of 58 studies in preclinical animal experiments. We used simulation modelling to evaluate three approaches to statistical analysis of repeated measurement data. In particular, we assessed the impact of (a) repeated measure analysis assuming that the outcome had non-constant variation at all time points (heterogeneous variance) (b) repeated measure analysis assuming constant variation in the outcome (homogeneous variance), (c) separate ANOVA at individual time point in repeated measures designs. The evaluation of the three model fitting was based on comparing the p-values distributions, the type I and type II error rates and by implication, the shrinkage or inflation of standard error estimates from 1000 simulated dataset. Of 58 studies with repeated measures design, three provided a rationale for repeated measurement and 23 studies reported using a repeated-measures analysis approach. Of the 35 studies that did not use repeated-measures analysis, fourteen studies used only two time points to calculate weight change which potentially means collected data was not fully utilized. Other studies reported only select time points (n = 12) raising the issue of selective reporting. Simulation studies showed that an incorrect assumption about the variance structure resulted in modified error rates and precision estimates. The reporting of the validity of assumptions for repeated measurement data is very poor. The homogeneous variation assumption, which is often invalid for body weight measurements, should be confirmed prior to conducting the repeated-measures analysis using homogeneous covariance structure and adjusting the analysis using corrections or model specifications if this is not met.

Suggested Citation

  • Jing Zhao & Chong Wang & Sarah C Totton & Jonah N Cullen & Annette M O’Connor, 2019. "Reporting and analysis of repeated measurements in preclinical animals experiments," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
  • Handle: RePEc:plo:pone00:0220879
    DOI: 10.1371/journal.pone.0220879
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220879
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220879&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.