IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220427.html
   My bibliography  Save this article

A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance

Author

Listed:
  • Min Zhang
  • Chong Wang
  • Annette O’Connor

Abstract

Identifying and controlling the emergence of antimicrobial resistance (AMR) is a high priority for researchers and public health officials. One critical component of this control effort is timely detection of emerging or increasing resistance using surveillance programs. Currently, detection of temporal changes in AMR relies mainly on analysis of the proportion of resistant isolates based on the dichotomization of minimum inhibitory concentration (MIC) values. In our work, we developed a hierarchical Bayesian latent class mixture model that incorporates a linear trend for the mean log2MIC of the non-resistant population. By introducing latent variables, our model addressed the challenges associated with the AMR MIC values, compensating for the censored nature of the MIC observations as well as the mixed components indicated by the censored MIC distributions. Inclusion of linear regression with time as a covariate in the hierarchical structure allowed modelling of the linear creep of the mean log2MIC in the non-resistant population. The hierarchical Bayesian model was accurate and robust as assessed in simulation studies. The proposed approach was illustrated using Salmonella enterica I,4,[5],12:i:- treated with chloramphenicol and ceftiofur in human and veterinary samples, revealing some significant linearly increasing patterns from the applications. Implementation of our approach to the analysis of an AMR MIC dataset would provide surveillance programs with a more complete picture of the changes in AMR over years by exploring the patterns of the mean resistance level in the non-resistant population. Our model could therefore serve as a timely indicator of a need for antibiotic intervention before an outbreak of resistance, highlighting the relevance of this work for public health. Currently, however, due to extreme right censoring on the MIC data, this approach has limited utility for tracking changes in the resistant population.

Suggested Citation

  • Min Zhang & Chong Wang & Annette O’Connor, 2020. "A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
  • Handle: RePEc:plo:pone00:0220427
    DOI: 10.1371/journal.pone.0220427
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220427
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220427&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    2. Jaspers, Stijn & Lambert, Philippe & Aerts, Marc, 2016. "A Bayesian approach to the semiparametric estimation of a minimum inhibitory concentration distribution," LIDAM Reprints ISBA 2016033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Jaspers, Stijn & Aerts, Marc & Verbeke, Geert & Beloeil, Pierre-Alexandre, 2014. "A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 30-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lambert, Philippe, 2023. "Nonparametric density estimation and risk quantification from tabulated sample moments," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 177-189.
    2. Xifen Huang & Jinfeng Xu, 2022. "Subgroup Identification and Regression Analysis of Clustered and Heterogeneous Interval-Censored Data," Mathematics, MDPI, vol. 10(6), pages 1-11, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.