Author
Listed:
- Natalia Arteaga-Marrero
- Enrique Villa
- Javier González-Fernández
- Yolanda Martín
- Juan Ruiz-Alzola
Abstract
The aim of this work is to provide a methodology to model the dielectric properties of human tissues based on phantoms prepared with an aqueous solution, in a semi-solid form, by using off-the-shelf components. Polyvinyl alcohol cryogel (PVA-C) has been employed as a novel gelling agent in the fabrication of phantoms for microwave applications in a wide frequency range, from 500 MHz to 20 GHz. Agar-based and deionized water phantoms have also been manufactured for comparison purposes. Mathematical models dependent on frequency and sucrose concentration are proposed to obtain the complex permittivity of the desired mimicked tissues. These models have been validated in the referred bandwidth showing a good agreement to experimental data for different sucrose concentrations. The PVA-C model provides a great performance as compared to agar, increasing the shelf-life of the phantoms and improving their consistency for contact-required devices. In addition, the feasibility of fabricating a multilayer phantom has been demonstrated with a two-layer phantom that exhibits a clear interface between each layer and its properties. Thus, the use of PVA-C extends the option for producing complex multilayer and multimodal phantoms.
Suggested Citation
Natalia Arteaga-Marrero & Enrique Villa & Javier González-Fernández & Yolanda Martín & Juan Ruiz-Alzola, 2019.
"Polyvinyl alcohol cryogel phantoms of biological tissues for wideband operation at microwave frequencies,"
PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
Handle:
RePEc:plo:pone00:0219997
DOI: 10.1371/journal.pone.0219997
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0219997. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.