IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0219452.html
   My bibliography  Save this article

Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure

Author

Listed:
  • Petr Popov
  • Ilya Bizin
  • Michael Gromiha
  • Kulandaisamy A
  • Dmitrij Frishman

Abstract

Being able to assess the phenotypic effects of mutations is a much required capability in precision medicine. However, most of the currently available structure-based methods actually predict stability changes caused by mutations rather than their pathogenic potential. There are also no dedicated methods to predict damaging mutations specifically in transmembrane proteins. In this study we developed and applied a machine-learning approach to discriminate between disease-associated and benign point mutations in the transmembrane regions of proteins with known 3D structure. The method, called BorodaTM (BOosted RegressiOn trees for Disease-Associated mutations in TransMembrane proteins), was trained on sequence-, structure-, and energy-derived descriptors. When compared with the state-of-the-art methods, BorodaTM is superior in classifying point mutations in transmembrane regions. Using BorodaTM we have conducted a large-scale mutation analysis in the transmembrane regions of human proteins with known 3D structures. For each protein we generated structural models for all point mutations by replacing each residue to 19 possible residue types. We classified ~1.8 millions point mutations as benign or diseased-associated and made all predictions available as a Web-server at https://www.iitm.ac.in/bioinfo/MutHTP/boroda.php.

Suggested Citation

  • Petr Popov & Ilya Bizin & Michael Gromiha & Kulandaisamy A & Dmitrij Frishman, 2019. "Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0219452
    DOI: 10.1371/journal.pone.0219452
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219452
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0219452&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0219452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jaroslav Bendl & Jan Stourac & Ondrej Salanda & Antonin Pavelka & Eric D Wieben & Jaroslav Zendulka & Jan Brezovsky & Jiri Damborsky, 2014. "PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Niroula & Mauno Vihinen, 2019. "How good are pathogenicity predictors in detecting benign variants?," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0219452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.