IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0219440.html
   My bibliography  Save this article

Optimal use of statistical methods to validate reference gene stability in longitudinal studies

Author

Listed:
  • Venkat Krishnan Sundaram
  • Nirmal Kumar Sampathkumar
  • Charbel Massaad
  • Julien Grenier

Abstract

Multiple statistical approaches have been proposed to validate reference genes in qPCR assays. However, conflicting results from these statistical methods pose a major hurdle in the choice of the best reference genes. Recent studies have proposed the use of at least three different methods but there is no consensus on how to interpret conflicting results. Researchers resort to averaging the stability ranks assessed by different approaches or attributing a weighted rank to candidate genes. However, we report here that the suitability of these validation methods can be influenced by the experimental setting. Therefore, averaging the ranks can lead to suboptimal assessment of stable reference genes if the method used is not suitable for analysis. As the respective approaches of these statistical methods are different, a clear understanding of the fundamental assumptions and the parameters that influence the calculation of reference gene stability is necessary. In this study, the stability of 10 candidate reference genes (Actb, Gapdh, Tbp, Sdha, Pgk1, Ppia, Rpl13a, Hsp60, Mrpl10, Rps26) was assessed using four common statistical approaches (GeNorm, NormFinder, Coefficient of Variation or CV analysis and Pairwise ΔCt method) in a longitudinal experimental setting. We used the development of the cerebellum and the spinal cord of mice as a model to assess the suitability of these statistical methods for reference gene validation. GeNorm and the Pairwise ΔCt were found to be ill suited due to a fundamental assumption in their stability calculations. Highly correlated genes were given better stability ranks despite significant overall variation. NormFinder fares better but the presence of highly variable genes influences the ranking of all genes because of the algorithm’s construct. CV analysis estimates overall variation, but it fails to consider variation across groups. We thus highlight the assumptions and potential pitfalls of each method using our longitudinal data. Based on our results, we have devised a workflow combining NormFinder, CV analysis along with visual representation of mRNA fold changes and one-way ANOVA for validating reference genes in longitudinal studies. This workflow proves to be more robust than any of these methods used individually.

Suggested Citation

  • Venkat Krishnan Sundaram & Nirmal Kumar Sampathkumar & Charbel Massaad & Julien Grenier, 2019. "Optimal use of statistical methods to validate reference gene stability in longitudinal studies," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0219440
    DOI: 10.1371/journal.pone.0219440
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219440
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0219440&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0219440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín Bustelo & Martín A Bruno & César F Loidl & Manuel Rey-Funes & Harry W M Steinbusch & Antonio W D Gavilanes & D L A van den Hove, 2020. "Statistical differences resulting from selection of stable reference genes after hypoxia and hypothermia in the neonatal rat brain," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0219440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.