Author
Listed:
- Wenhao Tang
- Nisha Ranganathan
- Vahid Shahrezaei
- Gerald Larrouy-Maumus
Abstract
Fast and reliable detection coupled with accurate data-processing and analysis of antibiotic-resistant bacteria is essential in clinical settings. In this study, we use MALDI-TOF on intact cells combined with a refined analysis framework to demonstrate discrimination between methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. By combining supervised and unsupervised machine learning methods, we firstly show that the mass spectroscopy data contains strong signal for the clustering of MSSA and MRSA. Then we concentrate on applying supervised learning to extract and verify the important features. A new workflow is proposed that allows for extracting a fixed set of reference peaks so that any new data can be aligned to it and hence consistent feature matrices can be obtained. Also note that by doing so we are able to examine the robustness of the important features that have been found. We also show that appropriate size of the benchmark data, appropriate alignment of the testing data and use of an optimal set of features via feature selection results in prediction accuracy over 90%. In summary, as proof-of-principle, our integrated experimental and bioinformatics study suggests a novel intact cell MALDI-TOF to be of great promise for fast and reliable detection of MRSA strains.
Suggested Citation
Wenhao Tang & Nisha Ranganathan & Vahid Shahrezaei & Gerald Larrouy-Maumus, 2019.
"MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA,"
PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
Handle:
RePEc:plo:pone00:0218951
DOI: 10.1371/journal.pone.0218951
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218951. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.