Author
Listed:
- Maryam Mosaarab
- Behrang Barekatain
- Kaamran Raahemifar
- Homa Movahednejad
Abstract
One of the most important challenges in live video streaming in mobile vehicular networks is the optimal use of broadband and point-to-point packet delay. Recent studies show that the sheer use of frames flow compression methods (such as H.264 or HEVC) and the proper communication overlay, such as Peer-to-Peer (P2P), has no absolute influence on increasing the quality of received video in VANET networks. Therefore, the use of an appropriate data exchange method, such as network coding, seems to be of great importance. Compared to Random Network Coding (RNC), XoR Network Coding (XNC) method has the least computational load for the network which is an important factor in optimal use of limited energy of nodes in a wireless network. The basic problem in XNC is that when a node is supposed to combine several frames and transmit them through an encoded frame, how this combination could be made to enable other nodes of the network to be broadcasted through receiving this packet and how can the available packets in their buffers decode as well as extract the largest number of frames in order to experience a higher video quality. To fulfil this aim, an encoding intelligent method is required which is based on the buffers’ status of neighbours. In the proposed method in this article, the best frame combination is reached through buffers status of neighbours and AHP methods or AHP-TOPSIS methods, and the encoded frames are broadcasted through XNC. Simulation results show that due to the reduction in number of transmitted packets in the network, parameters such as congestion and point-to-point delay are significantly reduced and vehicles experience a higher video quality compared with other similar methods.
Suggested Citation
Maryam Mosaarab & Behrang Barekatain & Kaamran Raahemifar & Homa Movahednejad, 2019.
"An enhanced heuristic XoR network coding-based method for high quality video streaming over VANETs,"
PLOS ONE, Public Library of Science, vol. 14(6), pages 1-29, June.
Handle:
RePEc:plo:pone00:0218647
DOI: 10.1371/journal.pone.0218647
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218647. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.