Author
Listed:
- Stefan Orter
- Deepak K Ravi
- Navrag B Singh
- Florian Vogl
- William R Taylor
- Niklas König Ignasiak
Abstract
Gait variability is a sensitive metric for assessing functional deficits in individuals with mobility impairments. To correctly represent the temporal evolution of gait kinematics, nonlinear measures require extended and uninterrupted time series. In this study, we present and validate a novel algorithm for concatenating multiple time-series in order to allow the nonlinear analysis of gait data from standard and unrestricted overground walking protocols. The full-body gait patterns of twenty healthy subjects were captured during five walking trials (at least 5 minutes) on a treadmill under different weight perturbation conditions. The collected time series were cut into multiple shorter time series of varying lengths and subsequently concatenated using a novel algorithm that identifies similar poses in successive time series in order to determine an optimal concatenation time point. After alignment of the datasets, the approach then concatenated the data to provide a smooth transition. Nonlinear measures to assess stability (Largest Lyapunov Exponent, LyE) and regularity (Sample Entropy, SE) were calculated in order to quantify the efficacy of the concatenation approach using intra-class correlation coefficients, standard error of measurement and paired effect sizes. Our results indicate overall good agreement between the full uninterrupted and the concatenated time series for LyE. However, SE was more sensitive to the proposed concatenation algorithm and might lead to false interpretation of physiological gait signals. This approach opens perspectives for analysis of dynamic stability of gait data from physiological overground walking protocols, but also the re-processing and estimation of nonlinear metrics from previously collected datasets.
Suggested Citation
Stefan Orter & Deepak K Ravi & Navrag B Singh & Florian Vogl & William R Taylor & Niklas König Ignasiak, 2019.
"A method to concatenate multiple short time series for evaluating dynamic behaviour during walking,"
PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
Handle:
RePEc:plo:pone00:0218594
DOI: 10.1371/journal.pone.0218594
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218594. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.