IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218023.html
   My bibliography  Save this article

The economic value of mussel farming for uncertain nutrient removal in the Baltic Sea

Author

Listed:
  • Ing-Marie Gren

Abstract

Mussel farming has been recognised as a low cost option for mitigating damage caused by eutrophication in the Baltic Sea. However, uncertain nutrient removal owing to weather and environmental conditions at the mussel farm site has not been previously considered. The purpose of this study was to estimate whether mussel farming has cost advantages even in conditions of uncertainty. To this end, the replacement cost method was used for the valuation of ecosystem services and a numerical cost minimisation model was constructed based on the safety-first approach to account for uncertainty in nutrient removal. This study showed that the value of mussel farming depends on the cost at the farm, and the impact on the mean and variability of nutrient removal in relation to other abatement measures. The study also pointed out the need of data on the decision makers’ risk attitudes and measurement of uncertainty. The application to the Baltic Sea showed that the total value of mussel farming increased from 0.34 billion Euro/year to 0.41 or 1.21 billion Euro when accounting for uncertainty depending on assumption of probability distribution. The increase was unevenly distributed between the Baltic Sea countries, with it found to be lower for countries equipped with highly productive mussel farms and long coastlines.

Suggested Citation

  • Ing-Marie Gren, 2019. "The economic value of mussel farming for uncertain nutrient removal in the Baltic Sea," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
  • Handle: RePEc:plo:pone00:0218023
    DOI: 10.1371/journal.pone.0218023
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218023
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218023&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bystrom, Olof & Andersson, Hans & Gren, Ing-Marie, 2000. "Economic criteria for using wetlands as nitrogen sinks under uncertainty," Ecological Economics, Elsevier, vol. 35(1), pages 35-45, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan F. Velasco-Munoz & José A. Aznar-Sánchez & Marina Schoenemann & Belén López-Felices, 2022. "The economic valuation of ecosystem services: bibliometric analysis," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 977-1014, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurélien Bruel & Jakub Kronenberg & Nadège Troussier & Bertrand Guillaume, 2019. "Linking Industrial Ecology and Ecological Economics: A Theoretical and Empirical Foundation for the Circular Economy," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 12-21, February.
    2. Tenwalde, Tracy & Jones, Eugene & Hitzhusen, Frederick J., 2005. "An Economic Analysis of Consumer Expenditures for Safe Drinking Water: Addressing Nitrogen Risk with an Averting Cost Approach," 2005 Annual meeting, July 24-27, Providence, RI 19431, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    4. Werner Hediger, 2003. "Alternative policy measures and farmers' participation to improve rural landscapes and water quality: A conceptual framework," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(III), pages 333-350, September.
    5. Gren, Ing-Marie, 2008. "Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea," Ecological Economics, Elsevier, vol. 66(2-3), pages 337-347, June.
    6. Soderqvist, Tore & Mitsch, William J. & Turner, R. Kerry, 2000. "Valuation of wetlands in a landscape and institutional perspective," Ecological Economics, Elsevier, vol. 35(1), pages 1-6, October.
    7. Lacroix, Anne & Beaudoin, Nicolas & Makowski, David, 2005. "Agricultural water nonpoint pollution control under uncertainty and climate variability," Ecological Economics, Elsevier, vol. 53(1), pages 115-127, April.
    8. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    9. Ekman, Sone, 2002. "Cost-Effective Farm-Level Nitrogen Abatement in the Presence of Environmental and Economic Risk," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24860, European Association of Agricultural Economists.
    10. Sergey Rabotyagov & Catherine L. Kling & Philip W. Gassman & Nancy N. Rabalais & R. Eugene Turner, 2012. "Economics of Dead Zones: Linking Externalities from the Land to their Consequences in the Sea, The," Center for Agricultural and Rural Development (CARD) Publications 12-wp534, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Sergey S. Rabotyagov & Adriana M. Valcu-Lisman & Catherine L. Kling, 2016. "Resilient Provision of Ecosystem Services from Agricultural Landscapes: Trade-offs Involving Means and Variances of Water Quality Improvements," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1295-1313.
    12. Zhen, Chen & Zheng, Xiaoyong, 2015. "Measuring the Informational Value of Interpretive Shelf Nutrition Labels to Shoppers," 2016 Allied Social Sciences Association (ASSA) Annual Meeting, January 3-5, 2016, San Francisco, California 212812, Agricultural and Applied Economics Association.
    13. Martin, Elsa & Destandau, Francois & Rozan, Anne, 2011. "Potential of Artificial Wetlands for Removing Pesticides from Water in a Cost-Effective Framework," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108777, Agricultural Economics Society.
    14. Natacha Fauvet & Jean-Christophe Pereau, 2014. "Nutrient Allowances Market and Wetland Abatement," Working Papers 2014.06, FAERE - French Association of Environmental and Resource Economists.
    15. Gren, Ing-Marie & Folmer, Henk, 2003. "Cooperation with respect to cleaning of an international water body with stochastic environmental damage: the case of the Baltic Sea," Ecological Economics, Elsevier, vol. 47(1), pages 33-42, November.
    16. Sergey S. Rabotyagov, 2010. "Ecosystem Services under Benefit and Cost Uncertainty: An Application to Soil Carbon Sequestration," Land Economics, University of Wisconsin Press, vol. 86(4), pages 668-686.
    17. François Destandau & Elsa Martin & Anne Rozan, 2011. "Potential of artificial wetlands for removing pesticides from water in a cost-effective framework," INRA UMR CESAER Working Papers 2011/5, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.