IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217710.html
   My bibliography  Save this article

Predicting transitions across macroscopic states for railway systems

Author

Listed:
  • Mark M Dekker
  • Debabrata Panja
  • Henk A Dijkstra
  • Stefan C Dekker

Abstract

Railways are classic instances of complex socio-technical systems, whose defining characteristic is that they exist and function by integrating (continuous-time) interactions among technical components and human elements. Typically, unlike physical systems, there are no governing laws for describing their dynamics. Based purely on micro-unit data, here we present a data-driven framework to analyze macro-dynamics in such systems, leading us to the identification of specific states and prediction of transitions across them. It consists of three steps, which we elucidate using data from the Dutch railways. First, we form a dimensionally reduced phase-space by extracting a few relevant components, wherein relevance is proxied by dominance in terms of explained variance, as well as by persistence in time. Secondly, we apply a clustering algorithm to the reduced phase-space, resulting in the revelation of states of the system. Specifically, we identify ‘rest’ and ‘disrupted’ states, for which the system operations deviates respectively little and strongly from the planned timetable. Third, we define an early-warning metric based on the probability of transitions across states, predict whether the system is likely to transit from one state to another within a given time-frame and evaluate the performance of this metric using the Peirce skill score. Interestingly, using case studies, we demonstrate that the framework is able to predict large-scale disruptions up to 90 minutes beforehand with significant skill, demonstrating, for the railway companies, its potential to better track the evolution of large-scale disruptions in their networks. We discuss that the applicability of the three-step framework stretches to other systems as well—i.e., not only socio-technical ones—wherein real-time monitoring can help to prevent macro-scale state transitions, albeit the methods chosen to execute each step may depend on specific system-details.

Suggested Citation

  • Mark M Dekker & Debabrata Panja & Henk A Dijkstra & Stefan C Dekker, 2019. "Predicting transitions across macroscopic states for railway systems," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-26, June.
  • Handle: RePEc:plo:pone00:0217710
    DOI: 10.1371/journal.pone.0217710
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217710
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217710&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark M. Dekker & Rolf N. Lieshout & Robin C. Ball & Paul C. Bouman & Stefan C. Dekker & Henk A. Dijkstra & Rob M. P. Goverde & Dennis Huisman & Debabrata Panja & Alfons A. M. Schaafsma & Marjan Akker, 2022. "A next step in disruption management: combining operations research and complexity science," Public Transport, Springer, vol. 14(1), pages 5-26, March.
    2. Mark M Dekker & Debabrata Panja, 2021. "Cascading dominates large-scale disruptions in transport over complex networks," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Bednarz & Tom Broekel, 2020. "Pulled or pushed? The spatial diffusion of wind energy between local demand and supply," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(4), pages 893-916.
    2. Weking, Jörg & Desouza, Kevin C. & Fielt, Erwin & Kowalkiewicz, Marek, 2023. "Metaverse-enabled entrepreneurship," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    3. Piotr Lis & Zuzanna Rataj & Katarzyna Suszyńska, 2022. "Implementation Risk Factors of Collaborative Housing in Poland: The Case of ‘Nowe Żerniki’ in Wrocław," JRFM, MDPI, vol. 15(3), pages 1-12, February.
    4. Mahzouni, Arian, 2019. "The role of institutional entrepreneurship in emerging energy communities: The town of St. Peter in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 297-308.
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. Åkerman, Maria & Kilpiö, Aino & Peltola, Taru, 2010. "Institutional change from the margins of natural resource use: The emergence of small-scale bioenergy production within industrial forestry in Finland," Forest Policy and Economics, Elsevier, vol. 12(3), pages 181-188, March.
    7. Naouri, Mohamed & Kuper, Marcel & Hartani, Tarik, 2020. "The power of translation: Innovation dialogues in the context of farmer-led innovation in the Algerian Sahara," Agricultural Systems, Elsevier, vol. 180(C).
    8. Gesa Pflitsch & Verena Radinger-Peer, 2018. "Developing Boundary-Spanning Capacity for Regional Sustainability Transitions—A Comparative Case Study of the Universities of Augsburg (Germany) and Linz (Austria)," Sustainability, MDPI, vol. 10(4), pages 1-26, March.
    9. Pradeep Racherla & Munir Mandviwalla, 2013. "Moving from Access to Use of the Information Infrastructure: A Multilevel Sociotechnical Framework," Information Systems Research, INFORMS, vol. 24(3), pages 709-730, September.
    10. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    11. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    12. Hall, Stephen & Foxon, Timothy J., 2014. "Values in the Smart Grid: The co-evolving political economy of smart distribution," Energy Policy, Elsevier, vol. 74(C), pages 600-609.
    13. Klerkx, Laurens & Leeuwis, Cees, 2008. "Institutionalizing end-user demand steering in agricultural R&D: Farmer levy funding of R&D in The Netherlands," Research Policy, Elsevier, vol. 37(3), pages 460-472, April.
    14. Islam, Md. Mofakkarul & Renwick, Alan W. & Lamprinopoulou-Kranis, Chrysa & Klerkx, Laurens, 2012. "Dynamics of Innovation in Livestock Genetics in Scotland: An Agricultural Innovation Systems Perspective," 131st Seminar, September 18-19, 2012, Prague, Czech Republic 135769, European Association of Agricultural Economists.
    15. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    16. Eleftheriadis, Iordanis M. & Anagnostopoulou, Evgenia G., 2015. "Identifying barriers in the diffusion of renewable energy sources," Energy Policy, Elsevier, vol. 80(C), pages 153-164.
    17. Catia Milena Lopes & Annibal José Scavarda & Mauricio Nunes Macedo de Carvalho & André Luis Korzenowski, 2018. "The Business Model and Innovation Analyses: The Sustainable Transition Obstacles and Drivers for the Hospital Supply Chains," Resources, MDPI, vol. 8(1), pages 1-17, December.
    18. Bianca Polenzani & Chiara Riganelli & Andrea Marchini, 2020. "Sustainability Perception of Local Extra Virgin Olive Oil and Consumers’ Attitude: A New Italian Perspective," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    19. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    20. Marina van Geenhuizen, 2013. "From Ivory Tower to Living Lab: Accelerating the Use of University Knowledge," Environment and Planning C, , vol. 31(6), pages 1115-1132, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.