IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217577.html
   My bibliography  Save this article

Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries

Author

Listed:
  • Khalid Almahmoud
  • Andrew Abboud
  • Rami A Namas
  • Ruben Zamora
  • Jason Sperry
  • Andrew B Peitzman
  • Michael S Truitt
  • Greg E Gaski
  • Todd O McKinley
  • Timothy R Billiar
  • Yoram Vodovotz

Abstract

Extremity and soft tissue injuries contribute significantly to inflammation and adverse in-hospital outcomes for trauma survivors; accordingly, we examined the complex association between clinical outcomes inflammatory responses in this setting using in silico tools. Two stringently propensity-matched, moderately/severely injured (Injury Severity Score > 16) patient sub-cohorts of ~30 patients each were derived retrospectively from a cohort of 472 blunt trauma survivors and segregated based on their degree of extremity injury severity (above or below 3 on the Abbreviated Injury Scale). Serial blood samples were analyzed for 31 plasma inflammatory mediators. In addition to standard statistical analyses, Dynamic Network Analysis (DyNA) and Principal Component Analysis (PCA) were used to model systemic inflammation following trauma. Patients in the severe extremity injury sub-cohort experienced longer intensive care unit length of stay (LOS), total LOS, and days on a mechanical ventilator, with higher Marshall Multiple Organ Dysfunction (MOD) Scores over the first 7 days post-injury as compared to the mild/moderate extremity injury sub-cohort. The higher severity cohort had statistically significant elevated lactate, base deficit, and creatine phosphokinase on first blood draw, along with significant changes in multiple circulating inflammatory mediators. DyNA pointed to a sustained role for type 17 immunity in both sub-cohorts, along with IFN-γ in the severe extremity injury group. DyNA network complexity increased over 7 days post-injury in the severe injury group, while generally decreasing over this same time period in the mild/moderate injury group. PCA suggested a more robust activation of multiple pathways in the severe extremity injury group as compared to the mild/moderate injury group. These studies thus point to the possibility of self-sustaining inflammation following severe extremity injury vs. resolving inflammation following less severe extremity injury.

Suggested Citation

  • Khalid Almahmoud & Andrew Abboud & Rami A Namas & Ruben Zamora & Jason Sperry & Andrew B Peitzman & Michael S Truitt & Greg E Gaski & Todd O McKinley & Timothy R Billiar & Yoram Vodovotz, 2019. "Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0217577
    DOI: 10.1371/journal.pone.0217577
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217577
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217577&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Mi & Gregory Constantine & Cordelia Ziraldo & Alexey Solovyev & Andres Torres & Rajaie Namas & Timothy Bentley & Timothy R Billiar & Ruben Zamora & Juan Carlos Puyana & Yoram Vodovotz, 2011. "A Dynamic View of Trauma/Hemorrhage-Induced Inflammation in Mice: Principal Drivers and Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    2. Cordelia Ziraldo & Yoram Vodovotz & Rami A Namas & Khalid Almahmoud & Victor Tapias & Qi Mi & Derek Barclay & Bahiyyah S Jefferson & Guoqiang Chen & Timothy R Billiar & Ruben Zamora, 2013. "Central Role for MCP-1/CCL2 in Injury-Induced Inflammation Revealed by In Vitro, In Silico, and Clinical Studies," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruben Zamora & Sebastian Korff & Qi Mi & Derek Barclay & Lukas Schimunek & Riccardo Zucca & Xerxes D Arsiwalla & Richard L Simmons & Paul Verschure & Timothy R Billiar & Yoram Vodovotz, 2018. "A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-16, November.
    2. Dolores Wolfram & Ravi Starzl & Hubert Hackl & Derek Barclay & Theresa Hautz & Bettina Zelger & Gerald Brandacher & W P Andrew Lee & Nadine Eberhart & Yoram Vodovotz & Johann Pratschke & Gerhard Piere, 2014. "Insights from Computational Modeling in Inflammation and Acute Rejection in Limb Transplantation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    3. Cordelia Ziraldo & Yoram Vodovotz & Rami A Namas & Khalid Almahmoud & Victor Tapias & Qi Mi & Derek Barclay & Bahiyyah S Jefferson & Guoqiang Chen & Timothy R Billiar & Ruben Zamora, 2013. "Central Role for MCP-1/CCL2 in Injury-Induced Inflammation Revealed by In Vitro, In Silico, and Clinical Studies," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-18, December.
    4. Nabil Azhar & Cordelia Ziraldo & Derek Barclay & David A Rudnick & Robert H Squires & Yoram Vodovotz & for the Pediatric Acute Liver Failure Study Group, 2013. "Analysis of Serum Inflammatory Mediators Identifies Unique Dynamic Networks Associated with Death and Spontaneous Survival in Pediatric Acute Liver Failure," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-8, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.