IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217389.html
   My bibliography  Save this article

Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems

Author

Listed:
  • Christine Bauer
  • Markus Schedl

Abstract

Relevance: Popularity-based approaches are widely adopted in music recommendation systems, both in industry and research. These approaches recommend to the target user what is currently popular among all users of the system. However, as the popularity distribution of music items typically is a long-tail distribution, popularity-based approaches to music recommendation fall short in satisfying listeners that have specialized music preferences far away from the global music mainstream. Addressing this gap, the contribution of this article is three-fold. Definition of mainstreaminess measures: First, we provide several quantitative measures describing the proximity of a user’s music preference to the music mainstream. Assuming that there is a difference between the global music mainstream and a country-specific one, we define the measures at two levels: relating a listener’s music preferences to the global music preferences of all users, or relating them to music preferences of the user’s country. To quantify such music preferences, we define a music item’s popularity in terms of artist playcounts (APC) and artist listener counts (ALC). Moreover, we adopt a distribution-based and a rank-based approach as means to decrease bias towards the head of the long-tail distribution. This eventually results in a framework of 6 measures to quantify music mainstream. Differences between countries with respect to music mainstream: Second, we perform in-depth quantitative and qualitative studies of music mainstream in that we (i) analyze differences between countries in terms of their level of mainstreaminess, (ii) uncover both positive and negative outliers (substantially higher and lower country-specific popularity, respectively, compared to the global mainstream), analyzing these with a mixed-methods approach, and (iii) investigate differences between countries in terms of listening preferences related to popular music artists. We conduct our studies and experiments using the standardized LFM-1b dataset, from which we analyze about 800,000,000 listening events shared by about 53,000 users (from 47 countries) of the music streaming platform Last.fm. We show that there are substantial country-specific differences in listeners’ music consumption behavior with respect to the most popular artists listened to. Rating prediction experiments: Third, we demonstrate the applicability of our study results to improve music recommendation systems. To this end, we conduct rating prediction experiments in which we tailor recommendations to a user’s level of preference for the music mainstream using the proposed 6 mainstreaminess measures: defined by a distribution-based or rank-based approach, defined on a global level or on a country level (for the user’s country), and for APC or ALC. Our approach roughly equals a hybrid recommendation approach in which a demographic filtering strategy is implemented before collaborative filtering is performed. Results suggest that, in terms of rating prediction accuracy, each of the presented mainstreaminess definitions has its merits.

Suggested Citation

  • Christine Bauer & Markus Schedl, 2019. "Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-36, June.
  • Handle: RePEc:plo:pone00:0217389
    DOI: 10.1371/journal.pone.0217389
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217389
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217389&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerald Häubl & Valerie Trifts, 2000. "Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids," Marketing Science, INFORMS, vol. 19(1), pages 4-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Manuel Pérez-Verdejo & C. A. Piña-García & Mario Miguel Ojeda & A. Rivera-Lara & L. Méndez-Morales, 2021. "The rhythm of Mexico: an exploratory data analysis of Spotify’s top 50," Journal of Computational Social Science, Springer, vol. 4(1), pages 147-161, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. März, Armin & Lachner, Michael & Heumann, Christian G. & Schumann, Jan H. & von Wangenheim, Florian, 2021. "How You Remind Me! The Influence of Mobile Push Notifications on Success Rates in Last-Minute Bidding," Journal of Interactive Marketing, Elsevier, vol. 54(C), pages 11-24.
    2. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    3. Anthony Dukes & Lin Liu, 2016. "Online Shopping Intermediaries: The Strategic Design of Search Environments," Management Science, INFORMS, vol. 62(4), pages 1064-1077, April.
    4. Joerß, Tom & Hoffmann, Stefan & Mai, Robert & Akbar, Payam, 2021. "Digitalization as solution to environmental problems? When users rely on augmented reality-recommendation agents," Journal of Business Research, Elsevier, vol. 128(C), pages 510-523.
    5. Teo, Thompson S. H. & Yeong, Yon Ding, 2003. "Assessing the consumer decision process in the digital marketplace," Omega, Elsevier, vol. 31(5), pages 349-363, October.
    6. Gökçe Esenduran & James A. Hill & In Joon Noh, 2020. "Understanding the Choice of Online Resale Channel for Used Electronics," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1188-1211, May.
    7. Poushneh, Atieh, 2021. "How close do we feel to virtual product to make a purchase decision? Impact of perceived proximity to virtual product and temporal purchase intention," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    8. Stefan Hoffmann & Tom Joerß & Robert Mai & Payam Akbar, 2022. "Augmented reality-delivered product information at the point of sale: when information controllability backfires," Journal of the Academy of Marketing Science, Springer, vol. 50(4), pages 743-776, July.
    9. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    10. Aby Abraham & Sanjay Patro, 2014. "‘Country-of-Origin’ Effect and Consumer Decision-making," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 39(3), pages 309-318, August.
    11. Fengchun Tang, 2020. "The more interactivity the better? Investigating interactivity, task complexity, and product knowledge in online purchase decisions," Information Technology and Management, Springer, vol. 21(3), pages 179-189, September.
    12. Barney Tan & Cheng Yi & Hock C. Chan, 2015. "Research Note—Deliberation Without Attention: The Latent Benefits of Distracting Website Features for Online Purchase Decisions," Information Systems Research, INFORMS, vol. 26(2), pages 437-455, June.
    13. Shiri Melumad & Rhonda Hadi & Christian Hildebrand & Adrian F. Ward, 2020. "Technology-Augmented Choice: How Digital Innovations Are Transforming Consumer Decision Processes," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 7(3), pages 90-101, October.
    14. Benedict G. C. Dellaert & Suzanne B. Shu & Theo A. Arentze & Tom Baker & Kristin Diehl & Bas Donkers & Nathanael J. Fast & Gerald Häubl & Heidi Johnson & Uma R. Karmarkar & Harmen Oppewal & Bernd H. S, 2020. "Consumer decisions with artificially intelligent voice assistants," Marketing Letters, Springer, vol. 31(4), pages 335-347, December.
    15. Ghiassaleh, Arezou & Kocher, Bruno & Czellar, Sandor, 2020. "Best seller!? Unintended negative consequences of popularity signs on consumer choice behavior," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 805-820.
    16. Kim, Jikyung (Jeanne) & Kim, Sanghwa & Choi, Jeonghye, 2020. "Purchase now and consume later: Do online and offline environments drive online social interactions and sales?," Journal of Business Research, Elsevier, vol. 120(C), pages 274-285.
    17. S, Suresh Kumar & S R, Shehnaz & Salam, Shiny, 2020. "Resurgence of small eateries– The successful business model of online Food Apps in major cities of Kerala," MPRA Paper 109185, University Library of Munich, Germany.
    18. Satinder Kumar & Rishi Raj Sharma, 2014. "An Empirical Analysis of Unsolicited Commercial E-mail," Paradigm, , vol. 18(1), pages 1-19, June.
    19. Xitong Li & Jörn Grahl & Oliver Hinz, 2022. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
    20. Arnold Kamis & Tziporah Stern & Daniel M. Ladik, 2010. "A flow-based model of web site intentions when users customize products in business-to-consumer electronic commerce," Information Systems Frontiers, Springer, vol. 12(2), pages 157-168, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.