Author
Listed:
- Josh Dorrough
- Steve J Sinclair
- Ian Oliver
Abstract
Biodiversity offsetting typically involves the trade of certain losses of habitat with uncertain future conservation benefits. Predicting the latter requires estimates of two outcomes; the biodiversity losses without conservation management (averted loss), and the biodiversity gains with conservation management (management gain). However, because empirical data to inform these estimates are limited, they are normally guided by expert opinion, often derived via unstructured methods without consideration of uncertainty. Here we used a structured elicitation with 29 experts to gather estimates of averted loss and management gain at offset sites. We used two methods; (i) experts estimated change in an aggregate biodiversity value (vegetation condition) and; (ii) experts provided probabilistic estimates of change for individual vegetation condition attributes, such as the richness and cover of plant growth forms. On average, experts predicted there would be only modest improvements with conservation management, yet uncertainty and variation among experts was large; in some cases, conservation benefits were not predicted. Estimates of change in vegetation condition suggested that benefits were from both averted loss and management gains and were thought to most likely arise in cases where starting condition was low to moderate. Similar patterns were observed for individual vegetation condition attributes, with management gains, relative to a reference, tending to be negatively correlated with starting value. Our study finds that: (i) on average, gains at offset sites are expected to be small, (ii) at many sites, experts do not believe gains can be obtained, and (iii) experts’ opinions can be divergent resulting in elevated levels of uncertainty. The potential for losses under conservation management highlights the need to: identify those components of biodiversity most likely to benefit from conservation management; better understand those situations when offset obligations are most likely to be met and conversely those situations with higher risk; and further develop offset mechanisms that encourage early or prior gains. These findings together with the global proliferation of biodiversity offsetting, provide a strong imperative to improve empirical data and investment in long-term, site-based monitoring of biodiversity outcomes at offset sites.
Suggested Citation
Josh Dorrough & Steve J Sinclair & Ian Oliver, 2019.
"Expert predictions of changes in vegetation condition reveal perceived risks in biodiversity offsetting,"
PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
Handle:
RePEc:plo:pone00:0216703
DOI: 10.1371/journal.pone.0216703
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216703. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.