Author
Listed:
- Toni Viskari
- Alexey Shiklomanov
- Michael C Dietze
- Shawn P Serbin
Abstract
Reducing uncertainties in Earth System Model predictions requires carefully evaluating core model processes. Here we examined how canopy radiative transfer model (RTM) parameter uncertainties, in combination with canopy structure, affect terrestrial carbon and energy projections in a demographic land-surface model, the Ecosystem Demography model (ED2). Our analyses focused on temperate deciduous forests and tested canopies of varying structural complexity. The results showed a strong sensitivity of tree productivity, albedo, and energy balance projections to RTM parameters. Impacts of radiative parameter uncertainty on stand-level canopy net primary productivity ranged from ~2 to > 20% and was most sensitive to canopy clumping and leaf reflectance/transmittance in the visible spectrum (~400–750 nm). ED2 canopy albedo varied by ~1 to ~10% and was most sensitive to near-infrared reflectance (~800–1200 nm). Bowen ratio, in turn, was most sensitive to wood optical properties parameterization; this was much larger than expected based on literature, suggesting model instabilities. In vertically and spatially complex canopies the model response to RTM parameterization may show an apparent reduced sensitivity when compared to simpler canopies, masking much larger changes occurring within the canopy. Our findings highlight both the importance of constraining canopy RTM parameters in models and valuating how the canopy structure responds to those parameter values. Finally, we advocate for more model evaluation, similar to this study, to highlight possible issues with model behavior or process representations, particularly models with demographic representations, and identify potential ways to inform and constrain model predictions.
Suggested Citation
Toni Viskari & Alexey Shiklomanov & Michael C Dietze & Shawn P Serbin, 2019.
"The influence of canopy radiation parameter uncertainty on model projections of terrestrial carbon and energy cycling,"
PLOS ONE, Public Library of Science, vol. 14(7), pages 1-24, July.
Handle:
RePEc:plo:pone00:0216512
DOI: 10.1371/journal.pone.0216512
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.