Author
Listed:
- Denis Rajnovic
- Xavier Muñoz-Berbel
- Jordi Mas
Abstract
Since 1959 with the proposal of Double Agar Layer (DAL) method for phage detection and quantification, many sophisticated methods have emerged meanwhile. However, many of them are either too complex/expensive or insensitive to replace routine utilization of DAL method in clinical, environmental and industrial environments. For that purpose, we have explored an alternative method for the detection and quantification of bacteriophages that fulfills the criteria of being rapid, simple and inexpensive. In this paper we have developed a method based on the analysis of optical density kinetics in bacterial cultures exposed to phage-containing samples. Although the decrease in optical density caused by cell lysis was one of the first observable consequences of the effect of viral infection in bacterial cultures, the potential of the method for the assessment of phage abundance has never been fully exploited. In this work we carry out a detailed study of optical density kinetics in phage-infected bacterial cultures, as a function of both, phage abundance and initial concentration of the host organisms. In total, 90 different combinations of bacteria/phage concentrations have been used. The data obtained provide valuable information about sensitivity ranges, duration of the assay, percentages of inhibition and type of lysing behavior for each phage concentration. The method described can detect, as few as 10 phage particles per assay volume after a phage incubation period of 3.5h. The duration of the assay can be shortened to 45min at the expense of losing sensitivity and increasing the limit of detection to 108 pfu/ml. Despite using non-sophisticated technology, the method described has shown sensitivity and response time comparable to other high-end methods. The simplicity of the technology and of the analytical steps involved, make the system susceptible of miniaturization and automation for high-throughput applications which can be implemented in routine analysis in many environments.
Suggested Citation
Denis Rajnovic & Xavier Muñoz-Berbel & Jordi Mas, 2019.
"Fast phage detection and quantification: An optical density-based approach,"
PLOS ONE, Public Library of Science, vol. 14(5), pages 1-14, May.
Handle:
RePEc:plo:pone00:0216292
DOI: 10.1371/journal.pone.0216292
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216292. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.