Author
Listed:
- Xu Ma
- Xiangwu Deng
- Long Qi
- Yu Jiang
- Hongwei Li
- Yuwei Wang
- Xupo Xing
Abstract
To reduce the cost of production and the pollution of the environment that is due to the overapplication of herbicide in paddy fields, the location information of rice seedlings and weeds must be detected in site-specific weed management (SSWM). With the development of deep learning, a semantic segmentation method with the SegNet that is based on fully convolutional network (FCN) was proposed. In this paper, RGB color images of seedling rice were captured in paddy field, and ground truth (GT) images were obtained by manually labeled the pixels in the RGB images with three separate categories, namely, rice seedlings, background, and weeds. The class weight coefficients were calculated to solve the problem of the unbalance of the number of the classification category. GT images and RGB images were used for data training and data testing. Eighty percent of the samples were randomly selected as the training dataset and 20% of samples were used as the test dataset. The proposed method was compared with a classical semantic segmentation model, namely, FCN, and U-Net models. The average accuracy rate of the SegNet method was 92.7%, whereas the average accuracy rates of the FCN and U-Net methods were 89.5% and 70.8%, respectively. The proposed SegNet method realized higher classification accuracy and could effectively classify the pixels of rice seedlings, background, and weeds in the paddy field images and acquire the positions of their regions.
Suggested Citation
Xu Ma & Xiangwu Deng & Long Qi & Yu Jiang & Hongwei Li & Yuwei Wang & Xupo Xing, 2019.
"Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields,"
PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
Handle:
RePEc:plo:pone00:0215676
DOI: 10.1371/journal.pone.0215676
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0215676. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.