IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0215136.html
   My bibliography  Save this article

Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment

Author

Listed:
  • Jianfang Cao
  • Min Wang
  • Yanfei Li
  • Qi Zhang

Abstract

An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.

Suggested Citation

  • Jianfang Cao & Min Wang & Yanfei Li & Qi Zhang, 2019. "Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0215136
    DOI: 10.1371/journal.pone.0215136
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215136
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215136&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0215136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianfang Cao & Yanfei Li & Yun Tian, 2018. "Emotional modelling and classification of a large-scale collection of scene images in a cluster environment," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumin Park & Haemi Park & Jungho Im & Cheolhee Yoo & Jinyoung Rhee & Byungdoo Lee & ChunGeun Kwon, 2019. "Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0215136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.