IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0215081.html
   My bibliography  Save this article

Modelling the effective dose to a population from fallout after a nuclear power plant accident—A scenario-based study with mitigating actions

Author

Listed:
  • Mats Isaksson
  • Martin Tondel
  • Robert Wålinder
  • Christopher Rääf

Abstract

The radiological consequences of a nuclear power plant (NPP) accident, resulting in the release of radionuclides to the environment, will depend largely on the mitigating actions instigated shortly after the accident. It is therefore important to make predictions of the radiation dose to the affected population, from external as well as internal exposure, soon after an accident, despite the fact that data are scarce. The aim of this study was to develop a model for the prediction of the cumulative effective dose up to 84 years of age based on the ground deposition of 137Cs that is determined soon after fallout. The model accounts for different assumptions regarding external and internal dose contributions, and the model parameters in this study were chosen to reflect various mitigating actions. Furthermore, the relative importance of these parameters was determined by sensitivity analysis. To the best of our knowledge, this model is unique as it allows quantification of both the external and the internal effective dose using only a fallout map of 137Cs after a nuclear power plant accident. The cumulative effective dose over a period of 50 years following the accident per unit 137Cs deposited was found to range from 0.14 mSv/kBq m-2 to 1.5 mSv/kBq m-2, depending on the mitigating actions undertaken. According to the sensitivity analysis, the most important parameters governing the cumulative effective dose to various adult populations during 50 years after the fallout appear to be: the correlation factor between the local areal deposition of 137Cs and the maximum initial ambient dose rate; the maximum transfer from regional average fallout on the ground to body burden; the local areal deposition of 137Cs; and the regional average 137Cs deposition. Therefore, it is important that mapping of local 137Cs deposition is carried out immediately after fallout from a nuclear power plant accident, followed by calculations of radiation doses for different scenarios using well-known parameters, in order to identify the most efficient mitigation strategies. Given this 137Cs mapping, we believe our model is a valuable tool for long-term radiological assessment in the early phase after NPP accidents.

Suggested Citation

  • Mats Isaksson & Martin Tondel & Robert Wålinder & Christopher Rääf, 2019. "Modelling the effective dose to a population from fallout after a nuclear power plant accident—A scenario-based study with mitigating actions," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0215081
    DOI: 10.1371/journal.pone.0215081
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215081
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215081&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0215081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0215081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.