IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0214712.html
   My bibliography  Save this article

Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder

Author

Listed:
  • Lili Chen
  • Yaru Hao
  • Xue Hu

Abstract

Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3 were computed as features. The classifier was constructed based on stacked sparse autoencoder. In addition, stacked sparse autoencoder was further compared with extreme learning machine and support vector machine in relation to their classification performance of electrohysterogram. The experiment results reveal that classifier based on stacked sparse autoencoder showed better performance than the other two classifiers with an accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the method proposed in this paper could be effective for detecting preterm birth in electrohysterogram and the framework designed in this work presents higher discriminability than other techniques.

Suggested Citation

  • Lili Chen & Yaru Hao & Xue Hu, 2019. "Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0214712
    DOI: 10.1371/journal.pone.0214712
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214712
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214712&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0214712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Guancen & Lin, Aijing, 2022. "Modified multiscale sample entropy and cross-sample entropy based on horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Hu, Shu-bo & Gao, Zheng-nan & He, Hai & Cao, Wen-ping & Zhao, Yu-ting & Zhou, Wei & Gu, Hong & Sun, Hui, 2020. "Adaptive time division power dispatch based on numerical characteristics of net loads," Energy, Elsevier, vol. 205(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0214712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.