IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0213888.html
   My bibliography  Save this article

A-MPDU aggregation with optimal number of MPDUs for delay requirements in IEEE 802.11ac

Author

Listed:
  • Won Hyoung Lee
  • Ho Young Hwang

Abstract

In this paper, we propose a method that estimates an average delay of frames for each queue and finds an optimal number of aggregated Medium Access Control (MAC) Protocol Data Units (MPDUs) to maximize the system throughput with satisfying the delay requirement of each queue when using the Aggregate MPDU (A-MPDU) aggregation in IEEE 802.11ac. The delay is defined as the sum of the queuing delay and the service delay. If few frames in a queue are aggregated, the frames which remain in the queue for next transmissions may violate the target delay because of the overhead for the next transmissions such as the backoff time, Physical Layer Convergence Procedure (PLCP) preamble, and PLCP header. If many of the frames in the queue are aggregated, the frames of the queue and the other queues may violate their target delays because of a long transmission duration and a long channel occupancy. In this paper, we obtain the average delay for each queue and the optimal number of aggregated MPDUs for the delay requirement of each queue in IEEE 802.11ac. At the last, we evaluate and show the performance of our proposed method through simulations. The simulation results show that the proposed method can estimate the average delay for each queue accurately. The simulation results also show that the proposed method can obtain the violation rates on the target delays less than 0.1. Furthermore, the simulation results show that the proposed method can yield higher system throughput than other conventional methods.

Suggested Citation

  • Won Hyoung Lee & Ho Young Hwang, 2019. "A-MPDU aggregation with optimal number of MPDUs for delay requirements in IEEE 802.11ac," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0213888
    DOI: 10.1371/journal.pone.0213888
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213888
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0213888&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0213888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed A Raouf & Fazirulhisyam Hashim & Jiun Terng Liew & Kamal Ali Alezabi, 2020. "Pseudorandom sequence contention algorithm for IEEE 802.11ah based internet of things network," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-34, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.